
Signal Processing Toolbox™

User’s Guide

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Signal Processing Toolbox™ User’s Guide

© COPYRIGHT 1988–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
1988 First printing New
November 1997 Second printing Revised
January 1998 Third printing Revised
September 2000 Fourth printing Revised for Version 5.0 (Release 12)
July 2002 Fifth printing Revised for Version 6.0 (Release 13)
December 2002 Online only Revised for Version 6.1 (Release 13+)
June 2004 Online only Revised for Version 6.2 (Release 14)
October 2004 Online only Revised for Version 6.2.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.2.1 (Release 14SP2)
September 2005 Online only Revised for Version 6.4 (Release 14SP3)
March 2006 Sixth printing Revised for Version 6.5 (Release 2006a)
September 2006 Online only Revised for Version 6.6 (Release 2006b)
March 2007 Online only Revised for Version 6.7 (Release 2007a)
September 2007 Online only Revised for Version 6.8 (Release 2007b)
March 2008 Online only Revised for Version 6.9 (Release 2008a)
October 2008 Online only Revised for Version 6.10 (Release 2008b)
March 2009 Online only Revised for Version 6.11 (Release 2009a)
September 2009 Online only Revised for Version 6.12 (Release 2009b)
March 2010 Online only Revised for Version 6.13 (Release 2010a)
September 2010 Online only Revised for Version 6.14 (Release 2010b)
April 2011 Online only Revised for Version 6.15 (Release 2011a)
September 2011 Online only Revised for Version 6.16 (Release 2011b)

Contents

Filtering, Linear Systems and Transforms
Overview

1
Filter Implementation and Analysis 1-2
Filtering Overview . 1-2
Convolution and Filtering . 1-2
Filters and Transfer Functions . 1-3
Filtering with the filter Function . 1-4

The filter Function . 1-6

Other Functions for Filtering . 1-8
Multirate Filter Bank Implementation 1-8
Anti-Causal, Zero-Phase Filter Implementation 1-9
Frequency Domain Filter Implementation 1-10

Impulse Response . 1-12

Frequency Response . 1-14
Digital Domain . 1-14
Analog Domain . 1-16
Magnitude and Phase . 1-17
Delay . 1-18

Zero-Pole Analysis . 1-21

Linear System Models . 1-23
Available Models . 1-23
Discrete-Time System Models . 1-23
Continuous-Time System Models . 1-31
Linear System Transformations . 1-32

Discrete Fourier Transform . 1-34

v

Filter Design and Implementation

2
Filter Requirements and Specification 2-2

IIR Filter Design . 2-4
IIR vs. FIR Filters . 2-4
Classical IIR Filters . 2-4
Other IIR Filters . 2-5
IIR Filter Method Summary . 2-5
Classical IIR Filter Design Using Analog Prototyping 2-6
Comparison of Classical IIR Filter Types 2-9

FIR Filter Design . 2-17
FIR vs. IIR Filters . 2-17
FIR Filter Summary . 2-18
Linear Phase Filters . 2-18
Windowing Method . 2-20
Multiband FIR Filter Design with Transition Bands 2-24
Constrained Least Squares FIR Filter Design 2-31
Arbitrary-Response Filter Design . 2-37

Special Topics in IIR Filter Design 2-43
Classic IIR Filter Design . 2-43
Analog Prototype Design . 2-44
Frequency Transformation . 2-44
Filter Discretization . 2-46

Selected Bibliography . 2-52

Designing a Filter in Fdesign — Process
Overview

3
Process Flow Diagram and Filter Design
Methodology . 3-2
Exploring the Process Flow Diagram 3-2
Selecting a Response . 3-4

vi Contents

Selecting a Specification . 3-4
Selecting an Algorithm . 3-6
Customizing the Algorithm . 3-8
Designing the Filter . 3-8
Design Analysis . 3-9
Realize or Apply the Filter to Input Data 3-10

Designing a Filter in the Filterbuilder GUI

4
The Graphical Interface to Fdesign 4-2
Introduction to Filterbuilder . 4-2
Filterbuilder Design Process . 4-2
Select a Response . 4-3
Select a Specification . 4-5
Select an Algorithm . 4-5
Customize the Algorithm . 4-6
Analyze the Design . 4-8
Realize or Apply the Filter to Input Data 4-8

Designing a FIR Filter Using filterbuilder 4-10
FIR Filter Design . 4-10

FDATool: A Filter Design and Analysis GUI

5
Overview . 5-2
Introduction to FDA Tool . 5-2
Integrated Products . 5-2
Filter Design Methods . 5-3
Using the Filter Design and Analysis Tool 5-4
Analyzing Filter Responses . 5-5
Filter Design and Analysis Tool Panels 5-5
Getting Help . 5-6

Opening FDATool . 5-7

vii

Choosing a Response Type . 5-8

Choosing a Filter Design Method . 5-9

Setting the Filter Design Specifications 5-10
Viewing Filter Specifications . 5-10
Filter Order . 5-10
Options . 5-11
Bandpass Filter Frequency Specifications 5-12
Bandpass Filter Magnitude Specifications 5-13

Computing the Filter Coefficients 5-15

Analyzing the Filter . 5-16
Displaying Filter Responses . 5-16
Using Data Tips . 5-18
Drawing Spectral Masks . 5-19
Changing the Sampling Frequency 5-20
Displaying the Response in FVTool 5-21

Editing the Filter Using the Pole/Zero Editor 5-23
Displaying the Pole-Zero Plot . 5-23
Changing the Pole-Zero Plot . 5-24

Converting the Filter Structure . 5-27
Converting to a New Structure . 5-27
Converting to Second-Order Sections 5-28

Importing a Filter Design . 5-30
Import Filter Panel . 5-30
Filter Structures . 5-32

Exporting a Filter Design . 5-35
Exporting Coefficients or Objects to the Workspace 5-35
Exporting Coefficients to an ASCII File 5-36
Exporting Coefficients or Objects to a MAT-File 5-37
Exporting to SPTool . 5-37
Exporting to a Simulink Model . 5-38
Other Ways to Export a Filter . 5-42

viii Contents

Generating a C Header File . 5-43

Generating MATLAB Code . 5-45

Managing Filters in the Current Session 5-47

Saving and Opening Filter Design Sessions 5-49

Statistical Signal Processing

6
Correlation and Covariance . 6-2
Background Information . 6-2
Using xcorr and xcov Functions . 6-3
Bias and Normalization . 6-3
Multiple Channels . 6-4

Spectral Analysis . 6-5
Background Information . 6-5
Spectral Estimation Method . 6-7
Nonparametric Methods . 6-9
Parametric Methods . 6-32
Using FFT to Obtain Simple Spectral Analysis Plots 6-45

Selected Bibliography . 6-48

Special Topics

7
Windows . 7-2
Why Use Windows? . 7-2
Available Window Functions . 7-2
Graphical User Interface Tools . 7-3
Basic Shapes . 7-3

ix

Generalized Cosine Windows . 7-6
Kaiser Window . 7-8
Chebyshev Window . 7-12

Parametric Modeling . 7-13
What is Parametric Modeling . 7-13
Available Parametric Modeling Functions 7-13
Time-Domain Based Modeling . 7-14
Frequency-Domain Based Modeling 7-19

Resampling . 7-23
Available Resampling Functions . 7-23
resample Function . 7-23
decimate and interp Functions . 7-25
upfirdn Function . 7-25
spline Function . 7-25

Cepstrum Analysis . 7-26
What Is a Cepstrum? . 7-26
Inverse Complex Cepstrum . 7-29

FFT-Based Time-Frequency Analysis 7-30

Median Filtering . 7-31

Communications Applications . 7-32
Modulation . 7-32
Demodulation . 7-33
Voltage Controlled Oscillator . 7-36

Deconvolution . 7-37

Specialized Transforms . 7-38
Chirp z-Transform . 7-38
Discrete Cosine Transform . 7-39
Hilbert Transform . 7-42
Walsh–Hadamard Transform . 7-43

Selected Bibliography . 7-49

x Contents

SPTool: A Signal Processing GUI Suite

8
SPTool: An Interactive Signal Processing
Environment . 8-2
SPTool Overview . 8-2
SPTool Data Structures . 8-3

Opening SPTool . 8-4

Getting Context-Sensitive Help . 8-6

Signal Browser . 8-7
Overview of the Signal Browser . 8-7
Opening the Signal Browser . 8-7

FDATool . 8-10

Filter Visualization Tool . 8-12
Connection between FVTool and SPTool 8-12
Opening the Filter Visualization Tool 8-12
Analysis Parameters . 8-13

Spectrum Viewer . 8-14
Spectrum Viewer Overview . 8-14
Opening the Spectrum Viewer . 8-14

Filtering and Analysis of Noise . 8-17
Overview . 8-17
Importing a Signal into SPTool . 8-17
Designing a Filter . 8-19
Applying a Filter to a Signal . 8-21
Analyzing a Signal . 8-23
Spectral Analysis in the Spectrum Viewer 8-25

Exporting Signals, Filters, and Spectra 8-28
Opening the Export Dialog Box . 8-28
Exporting a Filter to the MATLAB Workspace 8-29

xi

Accessing Filter Parameters . 8-30
Accessing Filter Parameters in a Saved Filter 8-30
Accessing Parameters in a Saved Spectrum 8-31

Importing Filters and Spectra . 8-33
Similarities to Other Procedures . 8-33
Importing Filters . 8-33
Importing Spectra . 8-35

Loading Variables from the Disk . 8-37

Saving and Loading Sessions . 8-38
SPTool Sessions . 8-38
Filter Formats . 8-38

Selecting Signals, Filters, and Spectra 8-40

Editing Signals, Filters, or Spectra 8-41

Making Signal Measurements with Markers 8-42

Setting Preferences . 8-44
Overview of Setting Preferences . 8-44
Summary of Settable Preferences . 8-45
Setting the Filter Design Tool . 8-46

Using the Filter Designer . 8-48
Filter Designer . 8-48
Filter Types . 8-48
FIR Filter Methods . 8-49
IIR Filter Methods . 8-49
Pole/Zero Editor . 8-49
Spectral Overlay Feature . 8-49
Opening the Filter Designer . 8-49
Accessing Filter Parameters in a Saved Filter 8-51
Designing a Filter with the Pole/Zero Editor 8-54
Positioning Poles and Zeros . 8-55
Redesigning a Filter Using the Magnitude Plot 8-57

xii Contents

Code Generation from MATLAB Support in
Signal Processing Toolbox

9
Supported Functions . 9-2

Specifying Inputs in Code Generation from MATLAB
. 9-7
Defining Input Size and Type . 9-7
Inputs must be Constants . 9-8

Code Generation Examples . 9-11
Apply Window to Input Signal . 9-11
Apply Lowpass Filter to Input Signal 9-13
Cross Correlate or Autocorrelate Input Data 9-14
freqzWith No Output Arguments 9-15
Zero Phase Filtering . 9-16

Technical Conventions

A

Index

xiii

xiv Contents

1

Filtering, Linear Systems
and Transforms Overview

• “Filter Implementation and Analysis” on page 1-2

• “The filter Function” on page 1-6

• “Other Functions for Filtering” on page 1-8

• “Impulse Response” on page 1-12

• “Frequency Response” on page 1-14

• “Zero-Pole Analysis” on page 1-21

• “Linear System Models” on page 1-23

• “Discrete Fourier Transform” on page 1-34

1 Filtering, Linear Systems and Transforms Overview

Filter Implementation and Analysis

In this section...

“Filtering Overview” on page 1-2

“Convolution and Filtering” on page 1-2

“Filters and Transfer Functions” on page 1-3

“Filtering with the filter Function” on page 1-4

Filtering Overview
This section describes how to filter discrete signals using the MATLAB®

filter function and other Signal Processing Toolbox™ functions. It also
discusses how to use the toolbox functions to analyze filter characteristics,
including impulse response, magnitude and phase response, group delay,
and zero-pole locations.

Convolution and Filtering
The mathematical foundation of filtering is convolution. The MATLAB conv
function performs standard one-dimensional convolution, convolving one
vector with another:

conv([1 1 1],[1 1 1])
ans =

1 2 3 2 1

Note Convolve rectangular matrices for two-dimensional signal processing
using the conv2 function.

A digital filter’s output y(k) is related to its input x(k) by convolution with its
impulse response h(k).

y k h l x k l
l

() () ()= −
=−∞

∞

∑

1-2

Filter Implementation and Analysis

If a digital filter’s impulse response h(k) is finite in length, and the input x(k)
is also of finite length, you can implement the filter using conv. Store x(k) in a
vector x, h(k) in a vector h, and convolve the two:

x = randn(5,1); % A random vector of length 5
h = [1 1 1 1]/4; % Length 4 averaging filter
y = conv(h,x);

The length of the output is the sum of the finite-length input vectors minus 1.

Filters and Transfer Functions
In general, the z-transform Y(z) of a discrete-time filter’s output y(n) is related
to the z-transform X(z) of the input by

Y z H z X z
b b z b n z

a a z a

n
() () ()

() () ... ()

() () ...
= = + + + +

+ + +

− −

−
1 2 1

1 2

1

1 (()
()

m z
X z

m+ −1

where H(z) is the filter’s transfer function. Here, the constants b(i) and a(i) are
the filter coefficients and the order of the filter is the maximum of n and m.

Note The filter coefficients start with subscript 1, rather than 0. This reflects
the standard indexing scheme used for MATLAB vectors.

MATLAB filter functions store the coefficients in two vectors, one for the
numerator and one for the denominator. By convention, it uses row vectors
for filter coefficients.

Filter Coefficients and Filter Names
Many standard names for filters reflect the number of a and b coefficients
present:

• When n = 0 (that is, b is a scalar), the filter is an Infinite Impulse Response
(IIR), all-pole, recursive, or autoregressive (AR) filter.

• When m = 0 (that is, a is a scalar), the filter is a Finite Impulse Response
(FIR), all-zero, nonrecursive, or moving-average (MA) filter.

1-3

1 Filtering, Linear Systems and Transforms Overview

• If both n and m are greater than zero, the filter is an IIR, pole-zero,
recursive, or autoregressive moving-average (ARMA) filter.

The acronyms AR, MA, and ARMA are usually applied to filters associated
with filtered stochastic processes.

Filtering with the filter Function
It is simple to work back to a difference equation from the z-transform relation
shown earlier. Assume that a(1) = 1. Move the denominator to the left-hand
side and take the inverse z-transform.

y k a y k a m y k m b x k b x k b n() () () () () () () () () (+ − + …+ + − = + − + …+ +2 1 1 1 2 1 1)) ()x k n−

In terms of current and past inputs, and past outputs, y(k) is

y k a y kb x k b x k b n x k n a m() () ()() () () () () () (= + − + …+ + − − …− +− −1 2 1 1 12 1)) ()y k m−

This is the standard time-domain representation of a digital filter, computed
starting with y(1) and assuming a causal system with zero initial conditions.
This representation’s progression is

y b x
y b x b x a y
y b x

() () ()
() () () () () () ()
() () ()

1 1 1
2 1 2 2 1 2 1
3 1 3

=
= + −
= + bb x b x a y a y() () () () () () () ()2 2 3 1 2 2 3 1+ − −
=

A filter in this form is easy to implement with the filter function. For
example, a simple single-pole filter (lowpass) is

B = 1; % Numerator
A = [1 -0.9]; % Denominator

where the vectors B and A represent the coefficients of a filter in transfer
function form. Note that the A coefficient vectors are written as if the output
and input terms are separated in the difference equation. For the example,
the previous coefficient vectors represent a linear constant-coefficient
difference equation of

1-4

Filter Implementation and Analysis

y n y n x n() . () ()− − =0 9 1

Changing the sign of the A(2) coefficient, results in the difference equation

y n y n x n() . () ()+ − =0 9 1

The previous coefficients are represented as:

B = 1; %Numerator
A = [1 0.9]; %Denominator

and results in a highpass filter.

To apply this filter to your data, use

y = filter(B,A,x);

filter gives you as many output samples as there are input samples, that
is, the length of y is the same as the length of x. If the first element of a
is not 1, filter divides the coefficients by a(1) before implementing the
difference equation.

1-5

1 Filtering, Linear Systems and Transforms Overview

The filter Function
filter is implemented as the transposed direct-form II structure, where n-1
is the filter order. This is a canonical form that has the minimum number of
delay elements.

At sample m, filter computes the difference equations

y m b x m z m

z m b x m z m a y m

zn

() () () ()

() () () () () ()

= + −
= + − −
=

−

1 1

2 1 2
1

1 2

22 1

1

1 1 1() () () () () ()

() () () ()

m b n x m z m a n y m

z m b n x m a n
n

n

= − + − − −
= −

−

− yy m()

In its most basic form, filter initializes the delay outputs zi(1), i = 1, ..., n-1
to 0. This is equivalent to assuming both past inputs and outputs are zero.
Set the initial delay outputs using a fourth input parameter to filter, or
access the final delay outputs using a second output parameter:

[y,zf] = filter(b,a,x,zi)

Access to initial and final conditions is useful for filtering data in sections,
especially if memory limitations are a consideration. Suppose you have
collected data in two segments of 5000 points each:

x1 = randn(5000,1); % Generate two random data sequences.
x2 = randn(5000,1);

Perhaps the first sequence, x1, corresponds to the first 10 minutes of data
and the second, x2, to an additional 10 minutes. The whole sequence is

1-6

The filter Function

x = [x1;x2]. If there is not sufficient memory to hold the combined sequence,
filter the subsequences x1 and x2 one at a time. To ensure continuity of
the filtered sequences, use the final conditions from x1 as initial conditions
to filter x2:

[y1,zf] = filter(b,a,x1);
y2 = filter(b,a,x2,zf);

The filtic function generates initial conditions for filter. filtic computes
the delay vector to make the behavior of the filter reflect past inputs and
outputs that you specify. To obtain the same output delay values zf as above
using filtic, use

zf = filtic(b,a,flipud(y1),flipud(x1));

This can be useful when filtering short data sequences, as appropriate initial
conditions help reduce transient startup effects.

1-7

1 Filtering, Linear Systems and Transforms Overview

Other Functions for Filtering

In this section...

“Multirate Filter Bank Implementation” on page 1-8

“Anti-Causal, Zero-Phase Filter Implementation” on page 1-9

“Frequency Domain Filter Implementation” on page 1-10

Multirate Filter Bank Implementation
The upfirdn function alters the sampling rate of a signal by an integer ratio
P/Q. It computes the result of a cascade of three systems that performs the
following tasks:

• Upsampling (zero insertion) by integer factor p

• Filtering by FIR filter h

• Downsampling by integer factor q

For example, to change the sample rate of a signal from 44.1 kHz to 48 kHz,
we first find the smallest integer conversion ratio p/q. Set

d = gcd(48000,44100);
p = 48000/d;
q = 44100/d;

In this example, p = 160 and q = 147. Sample rate conversion is then
accomplished by typing

y = upfirdn(x,h,p,q)

This cascade of operations is implemented in an efficient manner using
polyphase filtering techniques, and it is a central concept of multirate
filtering. Note that the quality of the resampling result relies on the quality of
the FIR filter h.

1-8

Other Functions for Filtering

Filter banks may be implemented using upfirdn by allowing the filter h
to be a matrix, with one FIR filter per column. A signal vector is passed
independently through each FIR filter, resulting in a matrix of output signals.

Other functions that perform multirate filtering (with fixed filter) include
resample, interp, and decimate.

Anti-Causal, Zero-Phase Filter Implementation
In the case of FIR filters, it is possible to design linear phase filters that,
when applied to data (using filter or conv), simply delay the output by a
fixed number of samples. For IIR filters, however, the phase distortion is
usually highly nonlinear. The filtfilt function uses the information in the
signal at points before and after the current point, in essence “looking into the
future,” to eliminate phase distortion.

To see how filtfilt does this, recall that if the z-transform of a real
sequence x(n) is X(z), the z-transform of the time reversed sequence x(n) is
X(1/z). Consider the processing scheme.

Image of Anti Causal Zero Phase Filter

When |z| = 1, that is z = ejω, the output reduces to X(ejω)|H(ejω)|2. Given
all the samples of the sequence x(n), a doubly filtered version of x that has
zero-phase distortion is possible.

For example, a 1-second duration signal sampled at 100 Hz, composed of two
sinusoidal components at 3 Hz and 40 Hz, is

fs = 100;
t = 0:1/fs:1;
x = sin(2*pi*t*3)+.25*sin(2*pi*t*40);

Now create a 10-point averaging FIR filter, and filter x using both filter
and filtfilt for comparison:

1-9

1 Filtering, Linear Systems and Transforms Overview

b = ones(1,10)/10; % 10 point averaging filter
y = filtfilt(b,1,x); % Noncausal filtering
yy = filter(b,1,x); % Normal filtering
plot(t,x,t,y,'--',t,yy,':')

Both filtered versions eliminate the 40 Hz sinusoid evident in the original,
solid line. The plot also shows how filter and filtfilt differ; the dashed
(filtfilt) line is in phase with the original 3 Hz sinusoid, while the dotted
(filter) line is delayed by about five samples. Also, the amplitude of the
dashed line is smaller due to the magnitude squared effects of filtfilt.

filtfilt reduces filter startup transients by carefully choosing initial
conditions, and by prepending onto the input sequence a short, reflected piece
of the input sequence. For best results, make sure the sequence you are
filtering has length at least three times the filter order and tapers to zero on
both edges.

Frequency Domain Filter Implementation
Duality between the time domain and the frequency domain makes it possible
to perform any operation in either domain. Usually one domain or the other is
more convenient for a particular operation, but you can always accomplish
a given operation in either domain.

1-10

Other Functions for Filtering

To implement general IIR filtering in the frequency domain, multiply the
discrete Fourier transform (DFT) of the input sequence with the quotient of
the DFT of the filter:

n = length(x);
y = ifft(fft(x).*fft(b,n)./fft(a,n));

This computes results that are identical to filter, but with different startup
transients (edge effects). For long sequences, this computation is very
inefficient because of the large zero-padded FFT operations on the filter
coefficients, and because the FFT algorithm becomes less efficient as the
number of points n increases.

For FIR filters, however, it is possible to break longer sequences into shorter,
computationally efficient FFT lengths. The function

y = fftfilt(b,x)

uses the overlap add method to filter a long sequence with multiple
medium-length FFTs. Its output is equivalent to filter(b,1,x).

1-11

1 Filtering, Linear Systems and Transforms Overview

Impulse Response
The impulse response of a digital filter is the output arising from the unit
impulse sequence defined as

 ()n
n
n

=
=
≠

⎧
⎨
⎩

1 0
0 0

You can generate an impulse sequence a number of ways; one straightforward
way is

imp = [1; zeros(49,1)];

The impulse response of the simple filter b = 1 and a = [1 -0.9] is

h = filter(b,a,imp);

A simple way to display the impulse response is with the Filter Visualization
Tool (fvtool):

fvtool(b,a)

Then click the Impulse Response button on the toolbar or select
Analysis > Impulse Response. This plot shows the exponential decay
h(n) = 0.9n of the single pole system:

1-12

Impulse Response

1-13

1 Filtering, Linear Systems and Transforms Overview

Frequency Response

In this section...

“Digital Domain” on page 1-14

“Analog Domain” on page 1-16

“Magnitude and Phase” on page 1-17

“Delay” on page 1-18

Digital Domain
freqz uses an FFT-based algorithm to calculate the z-transform frequency
response of a digital filter. Specifically, the statement

[h,w] = freqz(b,a,p)

returns the p-point complex frequency response, H(ejω), of the digital filter.

H e
b b e b n e

a a e a m
jw

jw jwn

jw
()

() () ... ()

() () ... (
= + + + +

+ + + +

− −

−
1 2 1

1 2 11)e jwm−

In its simplest form, freqz accepts the filter coefficient vectors b and a, and an
integer p specifying the number of points at which to calculate the frequency
response. freqz returns the complex frequency response in vector h, and the
actual frequency points in vector w in rad/s.

freqz can accept other parameters, such as a sampling frequency or a
vector of arbitrary frequency points. The example below finds the 256-point
frequency response for a 12th-order Chebyshev Type I filter. The call to freqz
specifies a sampling frequency fs of 1000 Hz:

[b,a] = cheby1(12,0.5,200/500);
[h,f] = freqz(b,a,256,1000);

Because the parameter list includes a sampling frequency, freqz returns a
vector f that contains the 256 frequency points between 0 and fs/2 used in
the frequency response calculation.

1-14

Frequency Response

Note This toolbox uses the convention that unit frequency is the Nyquist
frequency, defined as half the sampling frequency. The cutoff frequency
parameter for all basic filter design functions is normalized by the Nyquist
frequency. For a system with a 1000 Hz sampling frequency, for example,
300 Hz is 300/500 = 0.6. To convert normalized frequency to angular frequency
around the unit circle, multiply by π. To convert normalized frequency back
to hertz, multiply by half the sample frequency.

If you call freqz with no output arguments, it plots both magnitude
versus frequency and phase versus frequency. For example, a ninth-order
Butterworth lowpass filter with a cutoff frequency of 400 Hz, based on a 2000
Hz sampling frequency, is

[b,a] = butter(9,400/1000);

To calculate the 256-point complex frequency response for this filter, and plot
the magnitude and phase with freqz, use

freqz(b,a,256,2000)

or to display the magnitude and phase responses in fvtool, which provides
additional analysis tools, use

fvtool(b,a)

and click theMagnitude and Phase Response button on the toolbar or
select Analysis > Magnitude and Phase Response.

1-15

1 Filtering, Linear Systems and Transforms Overview

freqz can also accept a vector of arbitrary frequency points for use in the
frequency response calculation. For example,

w = linspace(0,pi);
h = freqz(b,a,w);

calculates the complex frequency response at the frequency points in w for the
filter defined by vectors b and a. The frequency points can range from 0 to
2π. To specify a frequency vector that ranges from zero to your sampling
frequency, include both the frequency vector and the sampling frequency
value in the parameter list.

Analog Domain
freqs evaluates frequency response for an analog filter defined by two input
coefficient vectors, b and a. Its operation is similar to that of freqz; you can
specify a number of frequency points to use, supply a vector of arbitrary
frequency points, and plot the magnitude and phase response of the filter.

1-16

Frequency Response

Magnitude and Phase
MATLAB functions are available to extract magnitude and phase from a
frequency response vector h. The function abs returns the magnitude of the
response; angle returns the phase angle in radians. To extract the magnitude
and phase of a Butterworth filter:

[b,a] = butter(9,400/1000);
fvtool(b,a)

and click theMagnitude and Phase Response button on the toolbar or
select Analysis > Magnitude and Phase Response to display the plot.

The unwrap function is also useful in frequency analysis. unwrap unwraps
the phase to make it continuous across 360º phase discontinuities by adding
multiples of ±360°, as needed. To see how unwrap is useful, design a
25th-order lowpass FIR filter:

h = fir1(25,0.4);

Obtain the filter’s frequency response with freqz, and plot the phase in
degrees:

1-17

1 Filtering, Linear Systems and Transforms Overview

[H,f] = freqz(h,1,512,2);
plot(f,angle(H)*180/pi); grid

It is difficult to distinguish the 360° jumps (an artifact of the arctangent
function inside angle) from the 180° jumps that signify zeros in the frequency
response.

unwrap eliminates the 360° jumps:

plot(f,unwrap(angle(H))*180/pi);

or you can use phasez to see the unwrapped phase.

Delay
The group delay of a filter is a measure of the average time delay of the filter
as a function of frequency. It is defined as the negative first derivative of a
filter’s phase response. If the complex frequency response of a filter is H(ejω),
then the group delay is

g

d
d

()
()= −

1-18

Frequency Response

where θ(ω) is the phase, or argument of H(ejω). Compute group delay with

[gd,w] = grpdelay(b,a,n)

which returns the n-point group delay, ,τg(ω) of the digital filter specified by
b and a, evaluated at the frequencies in vector w.

The phase delay of a filter is the negative of phase divided by frequency:

p()
()= −

To plot both the group and phase delays of a system on the same FVTool
graph, type

[b,a] = butter(10,200/1000);
hFVT = fvtool(b,a,'Analysis','grpdelay');
set(hFVT,'NumberofPoints',128,'OverlayedAnalysis','phasedelay');
legend(hFVT)

1-19

1 Filtering, Linear Systems and Transforms Overview

1-20

Zero-Pole Analysis

Zero-Pole Analysis
The zplane function plots poles and zeros of a linear system. For example,
a simple filter with a zero at -1/2 and a complex pole pair at 0.9e–j2π(0.3) and
0.9ej2π(0.3) is

zer = -0.5;
pol = 0.9*exp(j*2*pi*[-0.3 0.3]');

To view the pole-zero plot for this filter you can use

zplane(zer,pol)

or, for access to additional tools, use fvtool. First convert the poles and zeros
to transfer function form, then call fvtool,

[b,a] = zp2tf(zer,pol,1);
fvtool(b,a)

and click the Pole/Zero Plot toolbar button on the toolbar or select
Analysis > Pole/Zero Plot to see the plot.

1-21

1 Filtering, Linear Systems and Transforms Overview

For a system in zero-pole form, supply column vector arguments z and p to
zplane:

zplane(z,p)

For a system in transfer function form, supply row vectors b and a as
arguments to zplane:

zplane(b,a)

In this case zplane finds the roots of b and a using the roots function and
plots the resulting zeros and poles.

See “Linear System Models” on page 1-23 for details on zero-pole and transfer
function representation of systems.

1-22

Linear System Models

Linear System Models

In this section...

“Available Models” on page 1-23

“Discrete-Time System Models” on page 1-23

“Continuous-Time System Models” on page 1-31

“Linear System Transformations” on page 1-32

Available Models
Several Signal Processing Toolbox models are provided for representing linear
time-invariant systems. This flexibility lets you choose the representational
scheme that best suits your application and, within the bounds of numeric
stability, convert freely to and from most other models. This section provides
a brief overview of supported linear system models and describes how to work
with these models in the MATLAB technical computing environment.

Discrete-Time System Models
The discrete-time system models are representational schemes for digital
filters. The MATLAB technical computing environment supports several
discrete-time system models, which are described in the following sections:

• “Transfer Function” on page 1-23

• “Zero-Pole-Gain” on page 1-24

• “State-Space” on page 1-25

• “Partial Fraction Expansion (Residue Form)” on page 1-26

• “Second-Order Sections (SOS)” on page 1-27

• “Lattice Structure” on page 1-28

• “Convolution Matrix” on page 1-30

Transfer Function
The transfer function is a basic z-domain representation of a digital filter,
expressing the filter as a ratio of two polynomials. It is the principal

1-23

1 Filtering, Linear Systems and Transforms Overview

discrete-time model for this toolbox. The transfer function model description
for the z-transform of a digital filter’s difference equation is

Y z
b b z b n z

a a z a m z
X z

n

m
()

() () ()

() () ()
()= + + …+ +

+ + …+ +

− −

− −
1 2 1

1 2 1

1

1

Here, the constants b(i) and a(i) are the filter coefficients, and the order of the
filter is the maximum of n and m. In the MATLAB environment, you store
these coefficients in two vectors (row vectors by convention), one row vector
for the numerator and one for the denominator. See “Filters and Transfer
Functions” on page 1-3 for more details on the transfer function form.

Zero-Pole-Gain
The factored or zero-pole-gain form of a transfer function is

H z
q z
p z

k
z q z q z q n
z p z p

()
()
()

(())(())...(())
(())(())

= = − − −
− −

1 2
1 2(())z p n−

By convention, polynomial coefficients are stored in row vectors and
polynomial roots in column vectors. In zero-pole-gain form, therefore, the
zero and pole locations for the numerator and denominator of a transfer
function reside in column vectors. The factored transfer function gain k is a
MATLAB scalar.

The poly and roots functions convert between polynomial and zero-pole-gain
representations. For example, a simple IIR filter is

b = [2 3 4];
a = [1 3 3 1];

The zeros and poles of this filter are

q = roots(b)
p = roots(a)
% Gain factor
k = b(1)/a(1)

Returning to the original polynomials,

1-24

Linear System Models

bb = k*poly(q)
aa = poly(p)

Note that b and a in this case represent the transfer function:

H z
z z

z z z

z z

z z z
() = + +

+ + +
= + +

+ + +

− −

− − −
2 3 4

1 3 3

2 3 4

3 3 1

1 2

1 2 3

2

3 2

For b = [2 3 4], the roots function misses the zero for z equal to 0. In fact, it
misses poles and zeros for z equal to 0 whenever the input transfer function
has more poles than zeros, or vice versa. This is acceptable in most cases. To
circumvent the problem, however, simply append zeros to make the vectors
the same length before using the roots function; for example, b = [b 0].

State-Space
It is always possible to represent a digital filter, or a system of difference
equations, as a set of first-order difference equations. In matrix or state-space
form, you can write the equations as

x n Ax n Bu n
y n Cx n Du n
() () ()
() () ()

+ = +
= +

1

where u is the input, x is the state vector, and y is the output. For
single-channel systems, A is an m-by-m matrix where m is the order of the filter,
B is a column vector, C is a row vector, and D is a scalar. State-space notation
is especially convenient for multichannel systems where input u and output y
become vectors, and B, C, and D become matrices.

State-space representation extends easily to the MATLAB environment.A, B,
C, and D are rectangular arrays; MATLAB functions treat them as individual
variables.

Taking the z-transform of the state-space equations and combining them
shows the equivalence of state-space and transfer function forms:

Y z H z U z H z C zI A B D() () () () ()= = − +−, where 1

1-25

1 Filtering, Linear Systems and Transforms Overview

Don’t be concerned if you are not familiar with the state-space representation
of linear systems. Some of the filter design algorithms use state-space
form internally but do not require any knowledge of state-space concepts
to use them successfully. If your applications use state-space based signal
processing extensively, however, see the Control System Toolbox™ product
for a comprehensive library of state-space tools.

Partial Fraction Expansion (Residue Form)
Each transfer function also has a corresponding partial fraction expansion or
residue form representation, given by

b z
a z

r

p z

r n

p n z
k k z

()
()

()

()
...

()

()
() () ...=

−
+ +

−
+ + + +− −

−1

1 1 1
1 2

1 1
1 kk m n z m n() ()− + − −1

provided H(z) has no repeated poles. Here, n is the degree of the denominator
polynomial of the rational transfer function b(z)/a(z). If r is a pole of
multiplicity sr, then H(z) has terms of the form:

r j

p j z

r j

p j z

r j s

p j z
r

sr

()

()

()

(())
...

()

(())1

1

1

1

11 1 2 1−
+ +

−
+ + −

−− − −

The Signal Processing Toolbox residuez function in converts transfer
functions to and from the partial fraction expansion form. The “z” on the end
of residuez stands for z-domain, or discrete domain. residuez returns the
poles in a column vector p, the residues corresponding to the poles in a column
vector r, and any improper part of the original transfer function in a row
vector k. residuez determines that two poles are the same if the magnitude of
their difference is smaller than 0.1 percent of either of the poles’ magnitudes.

Partial fraction expansion arises in signal processing as one method of finding
the inverse z-transform of a transfer function. For example, the partial
fraction expansion of

H z
z

z z
() = − +

+ +

−

− −
4 8

1 6 8

1

1 2

is

1-26

Linear System Models

b = [-4 8];
a = [1 6 8];
[r,p,k] = residuez(b,a)

which corresponds to

H z
z z

() = −
+

+
+− −

12

1 4

8

1 21 1

To find the inverse z-transform of H(z), find the sum of the inverse
z-transforms of the two addends of H(z), giving the causal impulse response:

h n nn n() () () , , ,= − − + − = …12 4 8 2 0 1 2

To verify this in the MATLAB environment, type

imp = [1 0 0 0 0];
resptf = filter(b,a,imp)
respres = filter(r(1),[1 -p(1)],imp)+...

filter(r(2),[1 -p(2)],imp)

Second-Order Sections (SOS)
Any transfer function H(z) has a second-order sections representation

H z H z
b b z b z

a a z a z
k

k

L
k k k

k k kk

L
() ()= =

+ +

+ +=

− −

− −
=

∏ ∏
1

0 1
1

2
2

0 1
1

2
2

1

where L is the number of second-order sections that describe the system.
The MATLAB environment represents the second-order section form of a
discrete-time system as an L-by-6 array sos. Each row of sos contains a
single second-order section, where the row elements are the three numerator
and three denominator coefficients that describe the second-order section.

1-27

1 Filtering, Linear Systems and Transforms Overview

sos

b b b a a a
b b b a a a

b bL L

=

01 11 21 01 11 21

02 12 22 02 12 22

0 1

.

.
bb a a aL L L L2 0 1 2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

There are many ways to represent a filter in second-order section form.
Through careful pairing of the pole and zero pairs, ordering of the sections
in the cascade, and multiplicative scaling of the sections, it is possible to
reduce quantization noise gain and avoid overflow in some fixed-point filter
implementations. The functions zp2sos and ss2sos, described in “Linear
System Transformations” on page 1-32, perform pole-zero pairing, section
scaling, and section ordering.

Note All Signal Processing Toolbox second-order section transformations
apply only to digital filters.

Lattice Structure
For a discrete Nth order all-pole or all-zero filter described by the polynomial
coefficients a(n), n = 1, 2, ..., N+1, there are N corresponding lattice structure
coefficients k(n), n = 1, 2, ..., N. The parameters k(n) are also called the
reflection coefficients of the filter. Given these reflection coefficients, you can
implement a discrete filter as shown below.

1-28

Linear System Models

FIR and IIR Lattice Filter structure diagrams

For a general pole-zero IIR filter described by polynomial coefficients a
and b, there are both lattice coefficients k(n) for the denominator a and
ladder coefficients v(n) for the numerator b. The lattice/ladder filter may be
implemented as

Diagram of lattice/ladder filter

The toolbox function tf2latc accepts an FIR or IIR filter in polynomial form
and returns the corresponding reflection coefficients. An example FIR filter
in polynomial form is

b = [1.0000 0.6149 0.9899 0.0000 0.0031 -0.0082];

1-29

1 Filtering, Linear Systems and Transforms Overview

This filter’s lattice (reflection coefficient) representation is

k = tf2latc(b)

For IIR filters, the magnitude of the reflection coefficients provides an easy
stability check. If all the reflection coefficients corresponding to a polynomial
have magnitude less than 1, all of that polynomial’s roots are inside the unit
circle. For example, consider an IIR filter with numerator polynomial b from
above and denominator polynomial:

a = [1 1/2 1/3];

The filter’s lattice representation is

[k,v] = tf2latc(b,a);

Because abs(k) < 1 for all reflection coefficients in k, the filter is stable.

The function latc2tf calculates the polynomial coefficients for a filter from
its lattice (reflection) coefficients. Given the reflection coefficient vector
k(above), the corresponding polynomial form is

b = latc2tf(k);

The lattice or lattice/ladder coefficients can be used to implement the filter
using the function latcfilt.

Convolution Matrix
In signal processing, convolving two vectors or matrices is equivalent to
filtering one of the input operands by the other. This relationship permits the
representation of a digital filter as a convolution matrix.

Given any vector, the toolbox function convmtx generates a matrix whose
inner product with another vector is equivalent to the convolution of the two
vectors. The generated matrix represents a digital filter that you can apply to
any vector of appropriate length; the inner dimension of the operands must
agree to compute the inner product.

The convolution matrix for a vector b, representing the numerator coefficients
for a digital filter, is

1-30

Linear System Models

b = [1 2 3]; x = randn(3,1);
C = convmtx(b',3);

Two equivalent ways to convolve b with x are as follows.

y1 = C*x;
y2 = conv(b,x);

Continuous-Time System Models
The continuous-time system models are representational schemes for analog
filters. Many of the discrete-time system models described earlier are also
appropriate for the representation of continuous-time systems:

• State-space form

• Partial fraction expansion

• Transfer function

• Zero-pole-gain form

It is possible to represent any system of linear time-invariant differential
equations as a set of first-order differential equations. In matrix or state-space
form, you can express the equations as

x Ax Bu
y Cx Du

= +
= +

where u is a vector of nu inputs, x is an nx-element state vector, and y is a
vector of ny outputs. In the MATLAB environment, A, B, C, and D are stored in
separate rectangular arrays.

An equivalent representation of the state-space system is the Laplace
transform transfer function description

Y s H s U s() () ()=

where

1-31

1 Filtering, Linear Systems and Transforms Overview

H s C sI A B D() ()= − +−1

For single-input, single-output systems, this form is given by

H s
b s
a s

b s b s b n

a s a s a

n n

m m
()

()
()

() () ()

() () (
= = + + …+ +

+ + …+

−

−
1 2 1

1 2

1

1 mm + 1)

Given the coefficients of a Laplace transform transfer function, residue
determines the partial fraction expansion of the system. See the description
of residue for details.

The factored zero-pole-gain form is

H s
z s
p s

k
s z s z s z n

s p s p
()

()
()

(())(()) (())
(())(()) (

= = − − … −
− − …

1 2
1 2 ss p m− ())

As in the discrete-time case, the MATLAB environment stores polynomial
coefficients in row vectors in descending powers of s. It stores polynomial
roots, or zeros and poles, in column vectors.

Linear System Transformations
A number of Signal Processing Toolbox functions are provided to convert
between the various linear system models; see “Functions — Alphabetical
List” for a complete description of each. You can use the following chart to
find an appropriate transfer function: find the row of the model to convert
from on the left side of the chart and the column of the model to convert to on
the top of the chart and read the function name(s) at the intersection of the
row and column. Note that some cells of this table are empty.

Transfer
Function

State-
Space

Zero-
Pole-
Gain

Partial
Fraction

Lattice
Filter

Second-
Order
Sections

Convolution
Matrix

Transfer
Function

tf2ss tf2zp
roots

residuez tf2latc none convmtx

State-Space ss2tf ss2zp none none ss2sos none

1-32

Linear System Models

Transfer
Function

State-
Space

Zero-
Pole-
Gain

Partial
Fraction

Lattice
Filter

Second-
Order
Sections

Convolution
Matrix

Zero-Pole-
Gain

zp2tf
poly

zp2ss none none zp2sos none

Partial
Fraction

residuez none none none none none

Lattice
Filter

latc2tf none none none none none

SOS sos2tf sos2ss sos2zp none none none

Note Converting from one filter structure or model to another may produce
a result with different characteristics than the original. This is due to the
computer’s finite-precision arithmetic and the variations in the conversion’s
round-off computations.

Many of the toolbox filter design functions use these functions internally.
For example, the zp2ss function converts the poles and zeros of an
analog prototype into the state-space form required for creation of a
Butterworth, Chebyshev, or elliptic filter. Once in state-space form, the
filter design function performs any required frequency transformation, that
is, it transforms the initial lowpass design into a bandpass, highpass, or
bandstop filter, or a lowpass filter with the desired cutoff frequency. See
the descriptions of the individual filter design functions in “Functions —
Alphabetical List” for more details.

Note All Signal Processing Toolbox second-order section transformations
apply only to digital filters.

1-33

1 Filtering, Linear Systems and Transforms Overview

Discrete Fourier Transform
The discrete Fourier transform, or DFT, is the primary tool of digital signal
processing. The foundation of Signal Processing Toolbox product is the fast
Fourier transform (FFT), a method for computing the DFT with reduced
execution time. Many of the toolbox functions (including z-domain frequency
response, spectrum and cepstrum analysis, and some filter design and
implementation functions) incorporate the FFT.

The MATLAB environment provides the functions fft and ifft to compute
the discrete Fourier transform and its inverse, respectively. For the input
sequence x and its transformed version X (the discrete-time Fourier transform
at equally spaced frequencies around the unit circle), the two functions
implement the relationships

X k x n W
n

N
kn
N() () ,+ = +

=

−

∑1 1
0

1

and

x n
N

X k W
k

N

N
kn() .()

1

1
1

0

1

In these equations, the series subscripts begin with 1 instead of 0 because of
the MATLAB vector indexing scheme, and

W eN
j N= − 2 / .

Note The MATLAB convention is to use a negative j for the fft function.
This is an engineering convention; physics and pure mathematics typically
use a positive j.

fft, with a single input argument x, computes the DFT of the input vector
or matrix. If x is a vector, fft computes the DFT of the vector; if x is a
rectangular array, fft computes the DFT of each array column.

1-34

Discrete Fourier Transform

For example, create a time vector and signal:

t = (0:1/100:10-1/100); % Time vector
x = sin(2*pi*15*t) + sin(2*pi*40*t); % Signal

The DFT of the signal, and the magnitude and phase of the transformed
sequence, are then

y = fft(x); % Compute DFT of x
m = abs(y); p = unwrap(angle(y)); % Magnitude and phase

To plot the magnitude and phase, type the following commands:

f = (0:length(y)-1)*99/length(y); % Frequency vector
plot(f,m); title('Magnitude');
set(gca,'XTick',[15 40 60 85]);
figure; plot(f,p*180/pi); title('Phase');
set(gca,'XTick',[15 40 60 85]);

A second argument to fft specifies a number of points n for the transform,
representing DFT length:

y = fft(x,n);

In this case, fft pads the input sequence with zeros if it is shorter than n, or
truncates the sequence if it is longer than n. If n is not specified, it defaults
to the length of the input sequence. Execution time for fft depends on the
length, n, of the DFT it performs; see the fft for details about the algorithm.

1-35

1 Filtering, Linear Systems and Transforms Overview

Note The resulting FFT amplitude is A*n/2, where A is the original amplitude
and n is the number of FFT points. This is true only if the number of FFT
points is greater than or equal to the number of data samples. If the number
of FFT points is less, the FFT amplitude is lower than the original amplitude
by the above amount.

The inverse discrete Fourier transform function ifft also accepts an input
sequence and, optionally, the number of desired points for the transform. Try
the example below; the original sequence x and the reconstructed sequence
are identical (within rounding error).

t = (0:1/255:1);
x = sin(2*pi*120*t);
y = real(ifft(fft(x)));

This toolbox also includes functions for the two-dimensional FFT and its
inverse, fft2 and ifft2. These functions are useful for two-dimensional
signal or image processing. The goertzel function, which is another
algorithm to compute the DFT, also is included in the toolbox. This function is
efficient for computing the DFT of a portion of a long signal.

It is sometimes convenient to rearrange the output of the fft or fft2 function
so the zero frequency component is at the center of the sequence. The
MATLAB function fftshift moves the zero frequency component to the
center of a vector or matrix.

1-36

2

Filter Design and
Implementation

• “Filter Requirements and Specification” on page 2-2

• “IIR Filter Design” on page 2-4

• “FIR Filter Design” on page 2-17

• “Special Topics in IIR Filter Design” on page 2-43

• “Selected Bibliography” on page 2-52

2 Filter Design and Implementation

Filter Requirements and Specification
Filter design is the process of creating the filter coefficients to meet specific
filtering requirements. Filter implementation involves choosing and applying
a particular filter structure to those coefficients. Only after both design and
implementation have been performed can data be filtered. The following
chapter describes filter design and implementation in Signal Processing
Toolbox software.

The goal of filter design is to perform frequency dependent alteration of a data
sequence. A possible requirement might be to remove noise above 200 Hz from
a data sequence sampled at 1000 Hz. A more rigorous specification might call
for a specific amount of passband ripple, stopband attenuation, or transition
width. A very precise specification could ask to achieve the performance goals
with the minimum filter order, or it could call for an arbitrary magnitude
shape, or it might require an FIR filter. Filter design methods differ primarily
in how performance is specified.

To design a filter, the Signal Processing Toolbox software offers two
approaches: object-oriented and non-object oriented. The object-oriented
approach first constructs a filter specification object, fdesign, and then
invokes an appropriate design method. To illustrate the object-oriented
approach, design and implement a 5–th order lowpass Butterworth filter with
a 3–dB frequency of 200 Hz. Assume a sampling frequency of 1 kHz. Apply
the filter to input data.

Fs=1000; %Sampling Frequency

time = 0:(1/Fs):1; %time vector

% Data vector

x = cos(2*pi*60*time)+sin(2*pi*120*time)+randn(size(time));

d=fdesign.lowpass('N,F3dB',5,200,Fs); %lowpass filter specification object

% Invoke Butterworth design method

Hd=design(d,'butter');

y=filter(Hd,x);

The non-object oriented approach implements the filter using a function such
as butter and firpm. All of the non-object oriented filter design functions
operate with normalized frequencies. Convert frequency specifications in
Hz to normalized frequency to use these functions. The Signal Processing
Toolbox software defines normalized frequency to be in the closed interval

2-2

Filter Requirements and Specification

[0,1] with 1 denoting π radians/sample. For example, to specify a normalized
frequency of π/2 radians/sample, enter 0.5.

To convert from Hz to normalized frequency, multiply the frequency in Hz by
two and divide by the sampling frequency. To design a 5–th order lowpass
Butterworth filter with a 3–dB frequency of 200 Hz using the non-object
oriented approach, use butter:

Wn = (2*200)/1000; %Convert 3-dB frequency
% to normalized frequency: 0.4*pi rad/sample
[B,A] = butter(5,Wn,'low');
y = filter(B,A,x);

2-3

2 Filter Design and Implementation

IIR Filter Design

In this section...

“IIR vs. FIR Filters” on page 2-4

“Classical IIR Filters” on page 2-4

“Other IIR Filters” on page 2-5

“IIR Filter Method Summary” on page 2-5

“Classical IIR Filter Design Using Analog Prototyping” on page 2-6

“Comparison of Classical IIR Filter Types” on page 2-9

IIR vs. FIR Filters
The primary advantage of IIR filters over FIR filters is that they typically
meet a given set of specifications with a much lower filter order than a
corresponding FIR filter. Although IIR filters have nonlinear phase, data
processing within MATLAB software is commonly performed “offline,” that
is, the entire data sequence is available prior to filtering. This allows for a
noncausal, zero-phase filtering approach (via the filtfilt function), which
eliminates the nonlinear phase distortion of an IIR filter.

Classical IIR Filters
The classical IIR filters, Butterworth, Chebyshev Types I and II, elliptic, and
Bessel, all approximate the ideal “brick wall” filter in different ways.

This toolbox provides functions to create all these types of classical IIR filters
in both the analog and digital domains (except Bessel, for which only the
analog case is supported), and in lowpass, highpass, bandpass, and bandstop
configurations. For most filter types, you can also find the lowest filter
order that fits a given filter specification in terms of passband and stopband
attenuation, and transition width(s).

2-4

IIR Filter Design

Other IIR Filters
The direct filter design function yulewalk finds a filter with magnitude
response approximating a desired function. This is one way to create a
multiband bandpass filter.

You can also use the parametric modeling or system identification functions
to design IIR filters. These functions are discussed in “Parametric Modeling”
on page 7-13.

The generalized Butterworth design function maxflat is discussed in the
section “Generalized Butterworth Filter Design” on page 2-15.

IIR Filter Method Summary
The following table summarizes the various filter methods in the toolbox and
lists the functions available to implement these methods.

Toolbox Filters Methods and Available Functions

Filter Method Description Filter Functions

Analog
Prototyping

Using the poles and zeros of a
classical lowpass prototype
filter in the continuous
(Laplace) domain, obtain a
digital filter through frequency
transformation and filter
discretization.

Complete design functions:
besself, butter, cheby1, cheby2, ellip
Order estimation functions:

buttord, cheb1ord, cheb2ord, ellipord
Lowpass analog prototype functions:

besselap, buttap, cheb1ap, cheb2ap,
ellipap
Frequency transformation functions:

lp2bp, lp2bs, lp2hp, lp2lp
Filter discretization functions:

bilinear, impinvar

Direct Design Design digital filter directly
in the discrete time-domain
by approximating a piecewise
linear magnitude response.

yulewalk

2-5

2 Filter Design and Implementation

Toolbox Filters Methods and Available Functions (Continued)

Filter Method Description Filter Functions

Generalized
Butterworth
Design

Design lowpass Butterworth
filters with more zeros than
poles.

maxflat

Parametric
Modeling

Find a digital filter that
approximates a prescribed time
or frequency domain response.
(See System Identification
Toolbox™ documentation for
an extensive collection of
parametric modeling tools.)

Time-domain modeling functions:

lpc, prony, stmcb
Frequency-domain modeling functions:

invfreqs, invfreqz

Classical IIR Filter Design Using Analog Prototyping
The principal IIR digital filter design technique this toolbox provides is based
on the conversion of classical lowpass analog filters to their digital equivalents.
The following sections describe how to design filters and summarize the
characteristics of the supported filter types. See “Special Topics in IIR Filter
Design” on page 2-43 for detailed steps on the filter design process.

Complete Classical IIR Filter Design
You can easily create a filter of any order with a lowpass, highpass, bandpass,
or bandstop configuration using the filter design functions.

Filter Design Functions

Filter Type Design Function

Bessel (analog only) [b,a] = besself(n,Wn,options)

[z,p,k] = besself(n,Wn,options)

[A,B,C,D] = besself(n,Wn,options)

Butterworth [b,a] = butter(n,Wn,options)

[z,p,k] = butter(n,Wn,options)

[A,B,C,D] = butter(n,Wn,options)

2-6

IIR Filter Design

Filter Design Functions (Continued)

Filter Type Design Function

Chebyshev Type I [b,a] = cheby1(n,Rp,Wn,options)

[z,p,k] = cheby1(n,Rp,Wn,options)

[A,B,C,D] = cheby1(n,Rp,Wn,options)

Chebyshev Type II [b,a] = cheby2(n,Rs,Wn,options)

[z,p,k] = cheby2(n,Rs,Wn,options)

[A,B,C,D] = cheby2(n,Rs,Wn,options)

Elliptic [b,a] = ellip(n,Rp,Rs,Wn,options)

[z,p,k] = ellip(n,Rp,Rs,Wn,options)

[A,B,C,D] = ellip(n,Rp,Rs,Wn,options)

By default, each of these functions returns a lowpass filter; you need only
specify the desired cutoff frequency Wn in normalized frequency (Nyquist
frequency = 1 Hz). For a highpass filter, append the string 'high' to the
function’s parameter list. For a bandpass or bandstop filter, specify Wn as a
two-element vector containing the passband edge frequencies, appending the
string 'stop' for the bandstop configuration.

Here are some example digital filters:

[b,a] = butter(5,0.4); % Lowpass Butterworth

[b,a] = cheby1(4,1,[0.4 0.7]); % Bandpass Chebyshev Type I

[b,a] = cheby2(6,60,0.8,'high'); % Highpass Chebyshev Type II

[b,a] = ellip(3,1,60,[0.4 0.7],'stop'); % Bandstop elliptic

To design an analog filter, perhaps for simulation, use a trailing 's' and
specify cutoff frequencies in rad/s:

[b,a] = butter(5,.4,'s'); % Analog Butterworth filter

All filter design functions return a filter in the transfer function,
zero-pole-gain, or state-space linear system model representation, depending
on how many output arguments are present. In general, you should avoid

2-7

2 Filter Design and Implementation

using the transfer function form because numerical problems caused by
roundoff errors can occur. Instead, use the zero-pole-gain form which you can
convert to a second-order section (SOS) form using zp2sos and then use the
SOS form with dfilt to analyze or implement your filter.

Note All classical IIR lowpass filters are ill-conditioned for extremely low
cutoff frequencies. Therefore, instead of designing a lowpass IIR filter with
a very narrow passband, it can be better to design a wider passband and
decimate the input signal.

Designing IIR Filters to Frequency Domain Specifications
This toolbox provides order selection functions that calculate the minimum
filter order that meets a given set of requirements.

Filter Type Order Estimation Function

Butterworth [n,Wn] = buttord(Wp,Ws,Rp,Rs)

Chebyshev Type I [n,Wn] = cheb1ord(Wp, Ws, Rp, Rs)

Chebyshev Type II [n,Wn] = cheb2ord(Wp, Ws, Rp, Rs)

Elliptic [n,Wn] = ellipord(Wp, Ws, Rp, Rs)

These are useful in conjunction with the filter design functions. Suppose you
want a bandpass filter with a passband from 1000 to 2000 Hz, stopbands
starting 500 Hz away on either side, a 10 kHz sampling frequency, at most
1 dB of passband ripple, and at least 60 dB of stopband attenuation. You can
meet these specifications by using the butter function as follows.

[n,Wn] = buttord([1000 2000]/5000,[500 2500]/5000,1,60)
n =

12
Wn =

0.1951 0.4080
[b,a] = butter(n,Wn);

An elliptic filter that meets the same requirements is given by

2-8

IIR Filter Design

[n,Wn] = ellipord([1000 2000]/5000,[500 2500]/5000,1,60)
n =

5
Wn =

0.2000 0.4000
[b,a] = ellip(n,1,60,Wn);

These functions also work with the other standard band configurations, as
well as for analog filters; see “Functions — Alphabetical List” for details.

Comparison of Classical IIR Filter Types
The toolbox provides five different types of classical IIR filters, each optimal
in some way. This section shows the basic analog prototype form for each and
summarizes major characteristics.

Butterworth Filter
The Butterworth filter provides the best Taylor Series approximation to the
ideal lowpass filter response at analog frequencies Ω = 0 and Ω = ∞; for any
order N, the magnitude squared response has 2N–1 zero derivatives at these
locations (maximally flat at Ω = 0 and Ω = ∞). Response is monotonic overall,

decreasing smoothly from Ω = 0 to Ω = ∞. H j() /Ω = 1 2 at Ω = 1.

2-9

2 Filter Design and Implementation

Chebyshev Type I Filter
The Chebyshev Type I filter minimizes the absolute difference between the
ideal and actual frequency response over the entire passband by incorporating
an equal ripple of Rp dB in the passband. Stopband response is maximally
flat. The transition from passband to stopband is more rapid than for the

Butterworth filter. H j Rp() /Ω = −10 20 at Ω = 1.

Chebyshev Type II Filter
The Chebyshev Type II filter minimizes the absolute difference between the
ideal and actual frequency response over the entire stopband by incorporating
an equal ripple of Rs dB in the stopband. Passband response is maximally flat.

The stopband does not approach zero as quickly as the type I filter (and
does not approach zero at all for even-valued filter order n). The absence
of ripple in the passband, however, is often an important advantage.

H j Rs() /Ω = −10 20 at Ω = 1.

2-10

IIR Filter Design

Elliptic Filter
Elliptic filters are equiripple in both the passband and stopband. They
generally meet filter requirements with the lowest order of any supported
filter type. Given a filter order n, passband ripple Rp in decibels, and
stopband ripple Rs in decibels, elliptic filters minimize transition width.

H j Rp() /Ω = −10 20 at Ω = 1.

2-11

2 Filter Design and Implementation

Bessel Filter
Analog Bessel lowpass filters have maximally flat group delay at zero
frequency and retain nearly constant group delay across the entire passband.
Filtered signals therefore maintain their waveshapes in the passband
frequency range. Frequency mapped and digital Bessel filters, however, do
not have this maximally flat property; this toolbox supports only the analog
case for the complete Bessel filter design function.

Bessel filters generally require a higher filter order than other filters for

satisfactory stopband attenuation. H j() /Ω < 1 2 at Ω = 1 and decreases as
filter order n increases.

2-12

IIR Filter Design

Note The lowpass filters shown above were created with the analog prototype
functions besselap, buttap, cheb1ap, cheb2ap, and ellipap. These functions
find the zeros, poles, and gain of an order n analog filter of the appropriate
type with cutoff frequency of 1 rad/s. The complete filter design functions
(besself, butter, cheby1, cheby2, and ellip) call the prototyping functions
as a first step in the design process. See “Special Topics in IIR Filter Design”
on page 2-43 for details.

To create similar plots, use n = 5 and, as needed, Rp = 0.5 and Rs = 20. For
example, to create the elliptic filter plot:

[z,p,k] = ellipap(5,0.5,20);
w = logspace(-1,1,1000);
h = freqs(k*poly(z),poly(p),w);
semilogx(w,abs(h)), grid

Direct IIR Filter Design
This toolbox uses the term direct methods to describe techniques for IIR
design that find a filter based on specifications in the discrete domain. Unlike
the analog prototyping method, direct design methods are not constrained
to the standard lowpass, highpass, bandpass, or bandstop configurations.
Rather, these functions design filters with an arbitrary, perhaps multiband,
frequency response. This section discusses the yulewalk function, which
is intended specifically for filter design; “Parametric Modeling” on page
7-13 discusses other methods that may also be considered direct, such as
Prony’s method, Linear Prediction, the Steiglitz-McBride method, and inverse
frequency design.

The yulewalk function designs recursive IIR digital filters by fitting a
specified frequency response. yulewalk’s name reflects its method for
finding the filter’s denominator coefficients: it finds the inverse FFT of
the ideal desired magnitude-squared response and solves the modified
Yule-Walker equations using the resulting autocorrelation function samples.
The statement

[b,a] = yulewalk(n,f,m)

2-13

2 Filter Design and Implementation

returns row vectors b and a containing the n+1 numerator and denominator
coefficients of the order n IIR filter whose frequency-magnitude characteristics
approximate those given in vectors f and m. f is a vector of frequency points
ranging from 0 to 1, where 1 represents the Nyquist frequency. m is a vector
containing the desired magnitude response at the points in f. f and m
can describe any piecewise linear shape magnitude response, including a
multiband response. The FIR counterpart of this function is fir2, which also
designs a filter based on an arbitrary piecewise linear magnitude response.
See “FIR Filter Design” on page 2-17 for details.

Note that yulewalk does not accept phase information, and no statements are
made about the optimality of the resulting filter.

Design a multiband filter with yulewalk, and plot the desired and actual
frequency response:

m = [0 0 1 1 0 0 1 1 0 0];
f = [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1];
[b,a] = yulewalk(10,f,m);
[h,w] = freqz(b,a,128)
plot(f,m,w/pi,abs(h))

2-14

IIR Filter Design

Generalized Butterworth Filter Design
The toolbox function maxflat enables you to design generalized Butterworth
filters, that is, Butterworth filters with differing numbers of zeros and poles.
This is desirable in some implementations where poles are more expensive
computationally than zeros. maxflat is just like the butter function, except
that it you can specify two orders (one for the numerator and one for the
denominator) instead of just one. These filters are maximally flat. This
means that the resulting filter is optimal for any numerator and denominator
orders, with the maximum number of derivatives at 0 and the Nyquist
frequency ω = π both set to 0.

For example, when the two orders are the same, maxflat is the same as
butter:

[b,a] = maxflat(3,3,0.25)
b =

0.0317 0.0951 0.0951 0.0317
a =

1.0000 -1.4590 0.9104 -0.1978
[b,a] = butter(3,0.25)
b =

0.0317 0.0951 0.0951 0.0317
a =

1.0000 -1.4590 0.9104 -0.1978

However, maxflat is more versatile because it allows you to design a filter
with more zeros than poles:

[b,a] = maxflat(3,1,0.25)
b =

0.0950 0.2849 0.2849 0.0950
a =

1.0000 -0.2402

The third input to maxflat is the half-power frequency, a frequency between

0 and 1 with a desired magnitude response of 1 2/ .

You can also design linear phase filters that have the maximally flat property
using the 'sym' option:

2-15

2 Filter Design and Implementation

maxflat(4,'sym',0.3)
ans =

0.0331 0.2500 0.4337 0.2500 0.0331

For complete details of the maxflat algorithm, see Selesnick and Burrus [2].

2-16

FIR Filter Design

FIR Filter Design

In this section...

“FIR vs. IIR Filters” on page 2-17

“FIR Filter Summary” on page 2-18

“Linear Phase Filters” on page 2-18

“Windowing Method” on page 2-20

“Multiband FIR Filter Design with Transition Bands” on page 2-24

“Constrained Least Squares FIR Filter Design” on page 2-31

“Arbitrary-Response Filter Design” on page 2-37

FIR vs. IIR Filters
Digital filters with finite-duration impulse response (all-zero, or FIR filters)
have both advantages and disadvantages compared to infinite-duration
impulse response (IIR) filters.

FIR filters have the following primary advantages:

• They can have exactly linear phase.

• They are always stable.

• The design methods are generally linear.

• They can be realized efficiently in hardware.

• The filter startup transients have finite duration.

The primary disadvantage of FIR filters is that they often require a much
higher filter order than IIR filters to achieve a given level of performance.
Correspondingly, the delay of these filters is often much greater than for an
equal performance IIR filter.

2-17

2 Filter Design and Implementation

FIR Filter Summary

FIR Filters

Filter Design
Method Description Filter Functions

Windowing Apply window to truncated inverse
Fourier transform of desired “brick
wall” filter

fir1, fir2,
kaiserord

Multiband
with Transition
Bands

Equiripple or least squares approach
over sub-bands of the frequency range

firls, firpm,
firpmord

Constrained
Least Squares

Minimize squared integral error over
entire frequency range subject to
maximum error constraints

fircls, fircls1

Arbitrary
Response

Arbitrary responses, including
nonlinear phase and complex filters

cfirpm

Raised Cosine Lowpass response with smooth,
sinusoidal transition

firrcos

Linear Phase Filters
Except for cfirpm, all of the FIR filter design functions design linear phase
filters only. The filter coefficients, or “taps,” of such filters obey either an even
or odd symmetry relation. Depending on this symmetry, and on whether the
order n of the filter is even or odd, a linear phase filter (stored in length n+1
vector b) has certain inherent restrictions on its frequency response.

2-18

FIR Filter Design

Linear
Phase
Filter Type

Filter
Order Symmetry of Coefficients

Response
H(f), f = 0

Response
H(f), f = 1
(Nyquist)

Type I Even even:

b k b n k k n() (), ,...,= + − = +2 1 1

No
restriction

No
restriction

Type II Odd even:

b k b n k k n() (), ,...,= + − = +2 1 1

No
restriction

H(1) = 0

Type III Even odd:

b k b n k k n() (), ,...,= − + − = +2 1 1

H(0) = 0 H(1) = 0

Type IV Odd odd:

b k b n k k n() (), ,...,= − + − = +2 1 1

H(0) = 0 No
restriction

The phase delay and group delay of linear phase FIR filters are equal and
constant over the frequency band. For an order n linear phase FIR filter, the
group delay is n/2, and the filtered signal is simply delayed by n/2 time steps
(and the magnitude of its Fourier transform is scaled by the filter’s magnitude
response). This property preserves the wave shape of signals in the passband;
that is, there is no phase distortion.

The functions fir1, fir2, firls, firpm, fircls, fircls1, and firrcos all
design type I and II linear phase FIR filters by default. Both firls and
firpm design type III and IV linear phase FIR filters given a 'hilbert' or
'differentiator' flag. cfirpm can design any type of linear phase filter,
and nonlinear phase filters as well.

Note Because the frequency response of a type II filter is zero at the Nyquist
frequency (“high” frequency), fir1 does not design type II highpass and
bandstop filters. For odd-valued n in these cases, fir1 adds 1 to the order
and returns a type I filter.

2-19

2 Filter Design and Implementation

Windowing Method
Consider the ideal, or “brick wall,” digital lowpass filter with a cutoff
frequency of ω0 rad/s. This filter has magnitude 1 at all frequencies with
magnitude less than ω0, and magnitude 0 at frequencies with magnitude
between ω0 and π. Its impulse response sequence h(n) is

h n H e d e d
n

n
j n j n() ()

sin()= = =
− −∫ ∫

1

2

1

2 0

0 0

π
ω ω

π
ω ω

ππ

π ω ω

ω

ω

This filter is not implementable since its impulse response is infinite and
noncausal. To create a finite-duration impulse response, truncate it by
applying a window. By retaining the central section of impulse response in
this truncation, you obtain a linear phase FIR filter. For example, a length 51
filter with a lowpass cutoff frequency ω0 of 0.4 π rad/s is

b = 0.4*sinc(0.4*(-25:25));

The window applied here is a simple rectangular window. By Parseval’s
theorem, this is the length 51 filter that best approximates the ideal lowpass
filter, in the integrated least squares sense. The following command displays
the filter’s frequency response in FVTool:

fvtool(b,1)

2-20

FIR Filter Design

Note that the y-axis shown in the figure below is in Magnitude Squared.
You can set this by right-clicking on the axis label and selecting Magnitude
Squared from the menu.

Ringing and ripples occur in the response, especially near the band edge.
This “Gibbs effect” does not vanish as the filter length increases, but a
nonrectangular window reduces its magnitude. Multiplication by a window in
the time domain causes a convolution or smoothing in the frequency domain.
Apply a length 51 Hamming window to the filter and display the result using
FVTool:

b = 0.4*sinc(0.4*(-25:25));
b = b.*hamming(51)';
fvtool(b,1)

2-21

2 Filter Design and Implementation

Note that the y-axis shown in the figure below is in Magnitude Squared.
You can set this by right-clicking on the axis label and selecting Magnitude
Squared from the menu.

Using a Hamming window greatly reduces the ringing. This improvement is
at the expense of transition width (the windowed version takes longer to ramp
from passband to stopband) and optimality (the windowed version does not
minimize the integrated squared error).

The functions fir1 and fir2 are based on this windowing process. Given a
filter order and description of an ideal desired filter, these functions return a
windowed inverse Fourier transform of that ideal filter. Both use a Hamming
window by default, but they accept any window function. See “Windows” on
page 7-2 for an overview of windows and their properties.

2-22

FIR Filter Design

Standard Band FIR Filter Design: fir1
fir1 implements the classical method of windowed linear phase FIR
digital filter design. It resembles the IIR filter design functions in that it
is formulated to design filters in standard band configurations: lowpass,
bandpass, highpass, and bandstop.

The statements

n = 50;
Wn = 0.4;
b = fir1(n,Wn);

create row vector b containing the coefficients of the order n
Hamming-windowed filter. This is a lowpass, linear phase FIR filter with
cutoff frequency Wn. Wn is a number between 0 and 1, where 1 corresponds to
the Nyquist frequency, half the sampling frequency. (Unlike other methods,
here Wn corresponds to the 6 dB point.) For a highpass filter, simply append
the string 'high' to the function’s parameter list. For a bandpass or bandstop
filter, specify Wn as a two-element vector containing the passband edge
frequencies; append the string 'stop' for the bandstop configuration.

b = fir1(n,Wn,window) uses the window specified in column vector window
for the design. The vector window must be n+1 elements long. If you do not
specify a window, fir1 applies a Hamming window.

Kaiser Window Order Estimation. The kaiserord function estimates the
filter order, cutoff frequency, and Kaiser window beta parameter needed to
meet a given set of specifications. Given a vector of frequency band edges and
a corresponding vector of magnitudes, as well as maximum allowable ripple,
kaiserord returns appropriate input parameters for the fir1 function.

Multiband FIR Filter Design: fir2
The fir2 function also designs windowed FIR filters, but with an arbitrarily
shaped piecewise linear frequency response. This is in contrast to fir1, which
only designs filters in standard lowpass, highpass, bandpass, and bandstop
configurations.

The commands

2-23

2 Filter Design and Implementation

n = 50;
f = [0 .4 .5 1];
m = [1 1 0 0];
b = fir2(n,f,m);

return row vector b containing the n+1 coefficients of the order n FIR filter
whose frequency-magnitude characteristics match those given by vectors f
and m. f is a vector of frequency points ranging from 0 to 1, where 1 represents
the Nyquist frequency. m is a vector containing the desired magnitude
response at the points specified in f. (The IIR counterpart of this function
is yulewalk, which also designs filters based on arbitrary piecewise linear
magnitude responses. See “IIR Filter Design” on page 2-4 for details.)

Multiband FIR Filter Design with Transition Bands
The firls and firpm functions provide a more general means of specifying
the ideal desired filter than the fir1 and fir2 functions. These functions
design Hilbert transformers, differentiators, and other filters with odd
symmetric coefficients (type III and type IV linear phase). They also let you
include transition or “don’t care” regions in which the error is not minimized,
and perform band dependent weighting of the minimization.

The firls function is an extension of the fir1 and fir2 functions in that
it minimizes the integral of the square of the error between the desired
frequency response and the actual frequency response.

The firpm function implements the Parks-McClellan algorithm, which uses
the Remez exchange algorithm and Chebyshev approximation theory to design
filters with optimal fits between the desired and actual frequency responses.
The filters are optimal in the sense that they minimize the maximum error
between the desired frequency response and the actual frequency response;
they are sometimes called minimax filters. Filters designed in this way
exhibit an equiripple behavior in their frequency response, and hence are also
known as equiripple filters. The Parks-McClellan FIR filter design algorithm
is perhaps the most popular and widely used FIR filter design methodology.

The syntax for firls and firpm is the same; the only difference is their
minimization schemes. The next example shows how filters designed with
firls and firpm reflect these different schemes.

2-24

FIR Filter Design

Basic Configurations
The default mode of operation of firls and firpm is to design type I or type
II linear phase filters, depending on whether the order you desire is even or
odd, respectively. A lowpass example with approximate amplitude 1 from 0 to
0.4 Hz, and approximate amplitude 0 from 0.5 to 1.0 Hz is

n = 20; % Filter order
f = [0 0.4 0.5 1]; % Frequency band edges
a = [1 1 0 0]; % Desired amplitudes
b = firpm(n,f,a);

From 0.4 to 0.5 Hz, firpm performs no error minimization; this is a transition
band or “don’t care” region. A transition band minimizes the error more in
the bands that you do care about, at the expense of a slower transition rate.
In this way, these types of filters have an inherent trade-off similar to FIR
design by windowing.

To compare least squares to equiripple filter design, use firls to create
a similar filter. Type

bb = firls(n,f,a);

and compare their frequency responses using FVTool:

fvtool(b,1,bb,1)

2-25

2 Filter Design and Implementation

Note that the y-axis shown in the figure below is in Magnitude Squared.
You can set this by right-clicking on the axis label and selecting Magnitude
Squared from the menu.

The filter designed with firpm exhibits equiripple behavior. Also note that
the firls filter has a better response over most of the passband and stopband,
but at the band edges (f = 0.4 and f = 0.5), the response is further away from
the ideal than the firpm filter. This shows that the firpm filter’s maximum
error over the passband and stopband is smaller and, in fact, it is the smallest
possible for this band edge configuration and filter length.

Think of frequency bands as lines over short frequency intervals. firpm and
firls use this scheme to represent any piecewise linear desired function with
any transition bands. firls and firpm design lowpass, highpass, bandpass,
and bandstop filters; a bandpass example is

f = [0 0.3 0.4 0.7 0.8 1]; % Band edges in pairs

2-26

FIR Filter Design

a = [0 0 1 1 0 0]; % Bandpass filter amplitude

Technically, these f and a vectors define five bands:

• Two stopbands, from 0.0 to 0.3 and from 0.8 to 1.0

• A passband from 0.4 to 0.7

• Two transition bands, from 0.3 to 0.4 and from 0.7 to 0.8

Example highpass and bandstop filters are

f = [0 0.7 0.8 1]; % Band edges in pairs
a = [0 0 1 1]; % Highpass filter amplitude
f = [0 0.3 0.4 0.5 0.8 1]; % Band edges in pairs
a = [1 1 0 0 1 1]; % Bandstop filter amplitude

An example multiband bandpass filter is

f = [0 0.1 0.15 0.25 0.3 0.4 0.45 0.55 0.6 0.7 0.75 0.85 0.9 1];
a = [1 1 0 0 1 1 0 0 1 1 0 0 1 1];

Another possibility is a filter that has as a transition region the line
connecting the passband with the stopband; this can help control “runaway”
magnitude response in wide transition regions:

f = [0 0.4 0.42 0.48 0.5 1];
a = [1 1 0.8 0.2 0 0]; % Passband, linear transition,

% stopband

The Weight Vector
Both firls and firpm allow you to place more or less emphasis on minimizing
the error in certain frequency bands relative to others. To do this, specify a
weight vector following the frequency and amplitude vectors. An example
lowpass equiripple filter with 10 times less ripple in the stopband than the
passband is

n = 20; % Filter order
f = [0 0.4 0.5 1]; % Frequency band edges
a = [1 1 0 0]; % Desired amplitudes

2-27

2 Filter Design and Implementation

w = [1 10]; % Weight vector
b = firpm(n,f,a,w);

A legal weight vector is always half the length of the f and a vectors; there
must be exactly one weight per band.

Anti-Symmetric Filters / Hilbert Transformers
When called with a trailing 'h' or 'Hilbert' option, firpm and firls design
FIR filters with odd symmetry, that is, type III (for even order) or type IV
(for odd order) linear phase filters. An ideal Hilbert transformer has this
anti-symmetry property and an amplitude of 1 across the entire frequency
range. Try the following approximate Hilbert transformers and plot them
using FVTool:

b = firpm(21,[0.05 1],[1 1],'h'); % Highpass Hilbert
bb = firpm(20,[0.05 0.95],[1 1],'h'); % Bandpass Hilbert
fvtool(b,1,bb,1)

2-28

FIR Filter Design

You can find the delayed Hilbert transform of a signal x by passing it through
these filters.

fs = 1000; % Sampling frequency
t = (0:1/fs:2)'; % Two second time vector
x = sin(2*pi*300*t); % 300 Hz sine wave example signal
xh = filter(bb,1,x); % Hilbert transform of x

The analytic signal corresponding to x is the complex signal that has x as its
real part and the Hilbert transform of x as its imaginary part. For this FIR
method (an alternative to the hilbert function), you must delay x by half the
filter order to create the analytic signal:

xd = [zeros(10,1); x(1:length(x)-10)]; % Delay 10 samples
xa = xd + j*xh; % Analytic signal

2-29

2 Filter Design and Implementation

This method does not work directly for filters of odd order, which require a
noninteger delay. In this case, the hilbert function, described in “Specialized
Transforms” on page 7-38, estimates the analytic signal. Alternatively, use
the resample function to delay the signal by a noninteger number of samples.

Differentiators
Differentiation of a signal in the time domain is equivalent to multiplication
of the signal’s Fourier transform by an imaginary ramp function. That is, to
differentiate a signal, pass it through a filter that has a response H(ω) = jω.
Approximate the ideal differentiator (with a delay) using firpm or firls with
a 'd' or 'differentiator' option:

b = firpm(21,[0 1],[0 pi],'d');

For a type III filter, the differentiation band should stop short of the Nyquist
frequency, and the amplitude vector must reflect that change to ensure the
correct slope:

bb = firpm(20,[0 0.9],[0 0.9*pi],'d');

In the 'd' mode, firpm weights the error by 1/ω in nonzero amplitude bands
to minimize the maximum relative error. firls weights the error by (1/ω)2 in
nonzero amplitude bands in the 'd' mode.

2-30

FIR Filter Design

The following plots show the magnitude responses for the differentiators
above.

fvtool(b,1,bb,1)

Constrained Least Squares FIR Filter Design
The Constrained Least Squares (CLS) FIR filter design functions implement
a technique that enables you to design FIR filters without explicitly defining
the transition bands for the magnitude response. The ability to omit the
specification of transition bands is useful in several situations. For example,
it may not be clear where a rigidly defined transition band should appear if
noise and signal information appear together in the same frequency band.
Similarly, it may make sense to omit the specification of transition bands if
they appear only to control the results of Gibbs phenomena that appear in
the filter’s response. See Selesnick, Lang, and Burrus [2] for discussion of
this method.

2-31

2 Filter Design and Implementation

Instead of defining passbands, stopbands, and transition regions, the CLS
method accepts a cutoff frequency (for the highpass, lowpass, bandpass, or
bandstop cases), or passband and stopband edges (for multiband cases), for
the desired response. In this way, the CLS method defines transition regions
implicitly, rather than explicitly.

The key feature of the CLS method is that it enables you to define upper
and lower thresholds that contain the maximum allowable ripple in the
magnitude response. Given this constraint, the technique applies the least
square error minimization technique over the frequency range of the filter’s
response, instead of over specific bands. The error minimization includes
any areas of discontinuity in the ideal, “brick wall” response. An additional
benefit is that the technique enables you to specify arbitrarily small peaks
resulting from Gibbs’ phenomena.

There are two toolbox functions that implement this design technique.

Description Function

Constrained least square multiband FIR filter design fircls

Constrained least square filter design for lowpass and
highpass linear phase filters

fircls1

For details on the calling syntax for these functions, see their reference
descriptions in the Function Reference.

Basic Lowpass and Highpass CLS Filter Design
The most basic of the CLS design functions, fircls1, uses this technique to
design lowpass and highpass FIR filters. As an example, consider designing a
filter with order 61 impulse response and cutoff frequency of 0.3 (normalized).
Further, define the upper and lower bounds that constrain the design process
as:

• Maximum passband deviation from 1 (passband ripple) of 0.02.

• Maximum stopband deviation from 0 (stopband ripple) of 0.008.

2-32

FIR Filter Design

To approach this design problem using fircls1, use the following commands:

n = 61;
wo = 0.3;
dp = 0.02;
ds = 0.008;
h = fircls1(n,wo,dp,ds);
fvtool(h,1)

Note that the y-axis shown below is in Magnitude Squared. You can set
this by right-clicking on the axis label and selecting Magnitude Squared
from the menu.

2-33

2 Filter Design and Implementation

Multiband CLS Filter Design
fircls uses the same technique to design FIR filters with a desired piecewise
constant magnitude response. In this case, you can specify a vector of band
edges and a corresponding vector of band amplitudes. In addition, you can
specify the maximum amount of ripple for each band.

For example, assume the specifications for a filter call for:

• From 0 to 0.3 (normalized): amplitude 0, upper bound 0.005, lower
bound –0.005

• From 0.3 to 0.5: amplitude 0.5, upper bound 0.51, lower bound 0.49

• From 0.5 to 0.7: amplitude 0, upper bound 0.03, lower bound –0.03

• From 0.7 to 0.9: amplitude 1, upper bound 1.02, lower bound 0.98

• From 0.9 to 1: amplitude 0, upper bound 0.05, lower bound –0.05

Design a CLS filter with impulse response order 129 that meets these
specifications:

n = 129;
f = [0 0.3 0.5 0.7 0.9 1];
a = [0 0.5 0 1 0];
up = [0.005 0.51 0.03 1.02 0.05];
lo = [-0.005 0.49 -0.03 0.98 -0.05];
h = fircls(n,f,a,up,lo);
fvtool(h,1)

2-34

FIR Filter Design

Note that the y-axis shown below is in Magnitude Squared. You can set
this by right-clicking on the axis label and selecting Magnitude Squared
from the menu.

Weighted CLS Filter Design
Weighted CLS filter design lets you design lowpass or highpass FIR filters
with relative weighting of the error minimization in each band. The fircls1
function enables you to specify the passband and stopband edges for the least
squares weighting function, as well as a constant k that specifies the ratio of
the stopband to passband weighting.

For example, consider specifications that call for an FIR filter with impulse
response order of 55 and cutoff frequency of 0.3 (normalized). Also assume
maximum allowable passband ripple of 0.02 and maximum allowable
stopband ripple of 0.004. In addition, add weighting requirements:

2-35

2 Filter Design and Implementation

• Passband edge for the weight function of 0.28 (normalized)

• Stopband edge for the weight function of 0.32

• Weight error minimization 10 times as much in the stopband as in the
passband

To approach this using fircls1, type

n = 55;
wo = 0.3;
dp = 0.02;
ds = 0.004;
wp = 0.28;
ws = 0.32;
k = 10;
h = fircls1(n,wo,dp,ds,wp,ws,k);
fvtool(h,1)

2-36

FIR Filter Design

Note that the y-axis shown below is in Magnitude Squared. You can set
this by right-clicking on the axis label and selecting Magnitude Squared
from the menu.

Arbitrary-Response Filter Design
The cfirpm filter design function provides a tool for designing FIR filters
with arbitrary complex responses. It differs from the other filter design
functions in how the frequency response of the filter is specified: it accepts the
name of a function which returns the filter response calculated over a grid of
frequencies. This capability makes cfirpm a highly versatile and powerful
technique for filter design.

This design technique may be used to produce nonlinear-phase FIR filters,
asymmetric frequency-response filters (with complex coefficients), or more
symmetric filters with custom frequency responses.

2-37

2 Filter Design and Implementation

The design algorithm optimizes the Chebyshev (or minimax) error using
an extended Remez-exchange algorithm for an initial estimate. If this
exchange method fails to obtain the optimal filter, the algorithm switches
to an ascent-descent algorithm that takes over to finish the convergence to
the optimal solution.

Multiband Filter Design
Consider a multiband filter with the following special frequency-domain
characteristics.

Band Amplitude
Optimization
Weighting

[–1 –0.5] [5 1] 1

[–0.4 +0.3] [2 2] 10

[+0.4 +0.8] [2 1] 5

A linear-phase multiband filter may be designed using the predefined
frequency-response function multiband, as follows:

b = cfirpm(38, [-1 -0.5 -0.4 0.3 0.4 0.8], ...
{'multiband', [5 1 2 2 2 1]}, [1 10 5]);

For the specific case of a multiband filter, we can use a shorthand filter design
notation similar to the syntax for firpm:

b = cfirpm(38,[-1 -0.5 -0.4 0.3 0.4 0.8], ...
[5 1 2 2 2 1], [1 10 5]);

As with firpm, a vector of band edges is passed to cfirpm. This vector defines
the frequency bands over which optimization is performed; note that there are
two transition bands, from –0.5 to –0.4 and from 0.3 to 0.4.

In either case, the frequency response is obtained and plotted using linear
scale in FVTool:

fvtool(b,1)

2-38

FIR Filter Design

Note that the range of data shown below is (-Fs/2,Fs/2). You can set this
range by changing the x-axis units to Frequency (Fs = 1 Hz).

2-39

2 Filter Design and Implementation

The filter response for this multiband filter is complex, which is expected
because of the asymmetry in the frequency domain. The impulse response,
which you can select from the FVTool toolbar, is shown below.

Filter Design with Reduced Delay
Consider the design of a 62-tap lowpass filter with a half-Nyquist cutoff. If
we specify a negative offset value to the lowpass filter design function, the
group delay offset for the design is significantly less than that obtained for a
standard linear-phase design. This filter design may be computed as follows:

b = cfirpm(61,[0 0.5 0.55 1],{'lowpass',-16});

The resulting magnitude response is

fvtool(b,1)

2-40

FIR Filter Design

Note that the range of data in this plot is (-Fs/2,Fs/2), which you can set
changing the x-axis units to Frequency. The y-axis is in Magnitude Squared,
which you can set by right-clicking on the axis label and selectingMagnitude
Squared from the menu.

2-41

2 Filter Design and Implementation

The group delay of the filter reveals that the offset has been reduced from
N/2 to N/2-16 (i.e., from 30.5 to 14.5). Now, however, the group delay is no
longer flat in the passband region. To create this plot, click the Group Delay
button on the toolbar.

If we compare this nonlinear-phase filter to a linear-phase filter that has
exactly 14.5 samples of group delay, the resulting filter is of order 2*14.5, or
29. Using b = cfirpm(29,[0 0.5 0.55 1],'lowpass'), the passband and
stopband ripple is much greater for the order 29 filter. These comparisons
can assist you in deciding which filter is more appropriate for a specific
application.

2-42

Special Topics in IIR Filter Design

Special Topics in IIR Filter Design

In this section...

“Classic IIR Filter Design” on page 2-43

“Analog Prototype Design” on page 2-44

“Frequency Transformation” on page 2-44

“Filter Discretization” on page 2-46

Classic IIR Filter Design
The classic IIR filter design technique includes the following steps.

1 Find an analog lowpass filter with cutoff frequency of 1 and translate this
prototype filter to the desired band configuration

2 Transform the filter to the digital domain.

3 Discretize the filter.

The toolbox provides functions for each of these steps.

Design Task Available functions

Analog lowpass
prototype

buttap, cheb1ap, besselap, ellipap, cheb2ap

Frequency
transformation

lp2lp, lp2hp, lp2bp, lp2bs

Discretization bilinear, impinvar

Alternatively, the butter, cheby1, cheb2ord, ellip, and besself functions
perform all steps of the filter design and the buttord, cheb1ord, cheb2ord,
and ellipord functions provide minimum order computation for IIR filters.
These functions are sufficient for many design problems, and the lower level
functions are generally not needed. But if you do have an application where
you need to transform the band edges of an analog filter, or discretize a
rational transfer function, this section describes the tools with which to do so.

2-43

2 Filter Design and Implementation

Analog Prototype Design
This toolbox provides a number of functions to create lowpass analog
prototype filters with cutoff frequency of 1, the first step in the classical
approach to IIR filter design.

The table below summarizes the analog prototype design functions for each
supported filter type; plots for each type are shown in “IIR Filter Design”
on page 2-4.

Filter Type Analog Prototype Function

Bessel [z,p,k] = besselap(n)

Butterworth [z,p,k] = buttap(n)

Chebyshev Type I [z,p,k] = cheb1ap(n,Rp)

Chebyshev Type II [z,p,k] = cheb2ap(n,Rs)

Elliptic [z,p,k] = ellipap(n,Rp,Rs)

Frequency Transformation
The second step in the analog prototyping design technique is the frequency
transformation of a lowpass prototype. The toolbox provides a set of functions
to transform analog lowpass prototypes (with cutoff frequency of 1 rad/s)
into bandpass, highpass, bandstop, and lowpass filters of the desired cutoff
frequency.

Frequency
Transformation Transformation Function

Lowpass to lowpass

′ =s s / ω0

[numt,dent] = lp2lp (num,den,Wo)

[At,Bt,Ct,Dt] = lp2lp (A,B,C,D,Wo)

Lowpass to highpass

′ =s
s

ω0

[numt,dent] = lp2hp (num,den,Wo)

[At,Bt,Ct,Dt] = lp2hp (A,B,C,D,Wo)

2-44

Special Topics in IIR Filter Design

Frequency
Transformation Transformation Function

Lowpass to bandpass

′ =
+

s
B

s
s

ω ω
ωω

0 0
2

0

1(/)
/

[numt,dent] = lp2bp (num,den,Wo,Bw)

[At,Bt,Ct,Dt] = lp2bp (A,B,C,D,Wo,Bw)

Lowpass to bandstop

′ =
+

s
B s

s
ω

ω
ω

ω0

0

0
2 1

/

(/)

[numt,dent] = lp2bs (num,den,Wo,Bw)

[At,Bt,Ct,Dt] = lp2bs(A,B,C,D,Wo,Bw)

As shown, all of the frequency transformation functions can accept two linear
system models: transfer function and state-space form. For the bandpass
and bandstop cases

ω ω ω0 1 2=

and

Bω ω ω= −2 1

where ω1 is the lower band edge and ω2 is the upper band edge.

The frequency transformation functions perform frequency variable
substitution. In the case of lp2bp and lp2bs, this is a second-order
substitution, so the output filter is twice the order of the input. For lp2lp and
lp2hp, the output filter is the same order as the input.

To begin designing an order 10 bandpass Chebyshev Type I filter with a value
of 3 dB for passband ripple, enter

[z,p,k] = cheb1ap(5,3);

Outputs z, p, and k contain the zeros, poles, and gain of a lowpass analog
filter with cutoff frequency Ωc equal to 1 rad/s. Use the lp2bp function to
transform this lowpass prototype to a bandpass analog filter with band edges

2-45

2 Filter Design and Implementation

Ω1 = π/5 and Ω2 = π. First, convert the filter to state-space form so the lp2bp
function can accept it:

[A,B,C,D] = zp2ss(z,p,k); % Convert to state-space form.

Now, find the bandwidth and center frequency, and call lp2bp:

u1 = 0.1*2*pi; u2 = 0.5*2*pi; % In radians per second
Bw = u2-u1;
Wo = sqrt(u1*u2);
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

Finally, calculate the frequency response and plot its magnitude:

[b,a] = ss2tf(At,Bt,Ct,Dt); % Convert to TF form
w = linspace(0.01,1,500)*2*pi; % Generate frequency vector
h = freqs(b,a,w); % Compute frequency response
semilogy(w/2/pi,abs(h)), grid % Plot log magnitude vs. freq
xlabel('Frequency (Hz)');

Filter Discretization
The third step in the analog prototyping technique is the transformation of
the filter to the discrete-time domain. The toolbox provides two methods for
this: the impulse invariant and bilinear transformations. The filter design

2-46

Special Topics in IIR Filter Design

functions butter, cheby1, cheby2, and ellip use the bilinear transformation
for discretization in this step.

Analog
to Digital
Transformation Transformation Function

Impulse
invariance

[numd,dend] = impinvar (num,den,fs)

Bilinear
transform

[zd,pd,kd] = bilinear (z,p,k,fs,Fp)

[numd,dend] = bilinear (num,den,fs,Fp)

[Ad,Bd,Cd,Dd] = bilinear (At,Bt,Ct,Dt,fs,Fp)

Impulse Invariance
The toolbox function impinvar creates a digital filter whose impulse response
is the samples of the continuous impulse response of an analog filter. This
function works only on filters in transfer function form. For best results, the
analog filter should have negligible frequency content above half the sampling
frequency, because such high frequency content is aliased into lower bands
upon sampling. Impulse invariance works for some lowpass and bandpass
filters, but is not appropriate for highpass and bandstop filters.

Design a Chebyshev Type I filter and plot its frequency and phase response
using FVTool:

[bz,az] = impinvar(b,a,2);
fvtool(bz,az)

Click the Magnitude and Phase Response toolbar button.

2-47

2 Filter Design and Implementation

Impulse invariance retains the cutoff frequencies of 0.1 Hz and 0.5 Hz.

Bilinear Transformation
The bilinear transformation is a nonlinear mapping of the continuous domain
to the discrete domain; it maps the s-plane into the z-plane by

H z H s
s k

z
z

() ()=
= −

+
1
1

Bilinear transformation maps the jΩ-axis of the continuous domain to the
unit circle of the discrete domain according to

ω = ⎛
⎝⎜

⎞
⎠⎟

−2 1tan
Ω
k

2-48

Special Topics in IIR Filter Design

The toolbox function bilinear implements this operation, where the
frequency warping constant k is equal to twice the sampling frequency (2*fs)

by default, and equal to 2π πf f fp p stan () if you give bilinear a trailing
argument that represents a “match” frequency Fp. If a match frequency Fp
(in hertz) is present, bilinear maps the frequency Ω = 2πfp (in rad/s) to the
same frequency in the discrete domain, normalized to the sampling rate:
ω = 2πfp/fs (in rad/sample).

The bilinear function can perform this transformation on three different
linear system representations: zero-pole-gain, transfer function, and
state-space form. Try calling bilinear with the state-space matrices that
describe the Chebyshev Type I filter from the previous section, using a
sampling frequency of 2 Hz, and retaining the lower band edge of 0.1 Hz:

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,2,0.1);

The frequency response of the resulting digital filter is

[bz,az] = ss2tf(Ad,Bd,Cd,Dd); % Convert to TF
fvtool(bz,az)

2-49

2 Filter Design and Implementation

Click the Magnitude and Phase Response toolbar button.

The lower band edge is at 0.1 Hz as expected. Notice, however, that the
upper band edge is slightly less than 0.5 Hz, although in the analog domain
it was exactly 0.5 Hz. This illustrates the nonlinear nature of the bilinear
transformation. To counteract this nonlinearity, it is necessary to create
analog domain filters with “prewarped” band edges, which map to the correct
locations upon bilinear transformation. Here the prewarped frequencies u1
and u2 generate Bw and Wo for the lp2bp function:

fs = 2; % Sampling frequency (hertz)
u1 = 2*fs*tan(0.1*(2*pi/fs)/2); % Lower band edge (rad/s)
u2 = 2*fs*tan(0.5*(2*pi/fs)/2); % Upper band edge (rad/s)
Bw = u2 - u1; % Bandwidth
Wo = sqrt(u1*u2); % Center frequency
[At,Bt,Ct,Dt] = lp2bp(A,B,C,D,Wo,Bw);

2-50

Special Topics in IIR Filter Design

A digital bandpass filter with correct band edges 0.1 and 0.5 times the
Nyquist frequency is

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,fs);

The example bandpass filters from the last two sections could also be created
in one statement using the complete IIR design function cheby1. For instance,
an analog version of the example Chebyshev filter is

[b,a] = cheby1(5,3,[0.1 0.5]*2*pi,'s');

Note that the band edges are in rad/s for analog filters, whereas for the digital
case, frequency is normalized:

[bz,az] = cheby1(5,3,[0.1 0.5]);

All of the complete design functions call bilinear internally. They prewarp
the band edges as needed to obtain the correct digital filter.

2-51

2 Filter Design and Implementation

Selected Bibliography
[1] Karam, L.J., and J.H. McClellan. “Complex Chebyshev Approximation for
FIR Filter Design.” IEEE Trans. on Circuits and Systems II. March 1995.

[2] Selesnick, I.W., and C.S. Burrus. “Generalized Digital Butterworth
Filter Design.” Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal
Processing. Vol. 3 (May 1996).

[3] Selesnick, I.W., M. Lang, and C.S. Burrus. “Constrained Least Square
Design of FIR Filters without Specified Transition Bands.” Proceedings of
the IEEE Int. Conf. Acoust., Speech, Signal Processing. Vol. 2 (May 1995).
Pgs. 1260-1263.

2-52

3

Designing a Filter in
Fdesign — Process
Overview

3 Designing a Filter in Fdesign — Process Overview

Process Flow Diagram and Filter Design Methodology

In this section...

“Exploring the Process Flow Diagram” on page 3-2

“Selecting a Response” on page 3-4

“Selecting a Specification” on page 3-4

“Selecting an Algorithm” on page 3-6

“Customizing the Algorithm” on page 3-8

“Designing the Filter” on page 3-8

“Design Analysis” on page 3-9

“Realize or Apply the Filter to Input Data” on page 3-10

Note You must minimally have the Signal Processing Toolbox installed
to use fdesign and design. Some of the features described below may
be unavailable if your installation does not additionally include the DSP
System Toolbox™ license. The DSP System Toolbox significantly expands the
functionality available for the specification, design, and analysis of filters.
You can verify the presence of both toolboxes by typing ver at the command
prompt.

Exploring the Process Flow Diagram
The process flow diagram shown in the following figure lists the steps and
shows the order of the filter design process.

3-2

Process Flow Diagram and Filter Design Methodology

The first four steps of the filter design process relate to the filter Specifications
Object, while the last two steps involve the filter Implementation Object. Both
of these objects are discussed in more detail in the following sections. Step 5
- the design of the filter, is the transition step from the filter Specifications
Object to the Implementation object. The analysis and verification step is

3-3

3 Designing a Filter in Fdesign — Process Overview

completely optional. It provides methods for the filter designer to ensure that
the filter complies with all design criteria. Depending on the results of this
verification, you can loop back to steps 3 and 4, to either choose a different
algorithm, or to customize the current one. You may also wish to go back to
steps 3 or 4 after you filter the input data with the designed filter (step 7),
and find that you wish to tweak the filter or change it further.

The diagram shows the help command for each step. Enter the help line at the
MATLAB command prompt to receive instructions and further documentation
links for the particular step. Not all of the steps have to be executed explicitly.
For example, you could go from step 1 directly to step 5, and the interim three
steps are done for you by the software.

The following are the details for each of the steps shown above.

Selecting a Response
If you type:

help fdesign/responses

at the MATLAB command prompt, you see a list of all available filter
responses. The responses marked with an asterisk require the DSP System
Toolbox.

You must select a response to initiate the filter. In this example, a bandpass
filter Specifications Object is created by typing the following:

d = fdesign.bandpass

Selecting a Specification
A specification is an array of design parameters for a given filter. The
specification is a property of the Specifications Object.

Note A specification is not the same as the Specifications Object. A
Specifications Object contains a specification as one of its properties.

3-4

Process Flow Diagram and Filter Design Methodology

When you select a filter response, there are a number of different
specifications available. Each one contains a different combination of design
parameters. After you create a filter Specifications Object, you can query the
available specifications for that response. Specifications marked with an
asterisk require the DSP System Toolbox.

>> d = fdesign.bandpass; % step 1 - choose the response
>> set (d, 'specification')

ans =

'Fst1,Fp1,Fp2,Fst2,Ast1,Ap,Ast2'
'N,F3dB1,F3dB2'
'N,F3dB1,F3dB2,Ap'
'N,F3dB1,F3dB2,Ast'
'N,F3dB1,F3dB2,Ast1,Ap,Ast2'
'N,F3dB1,F3dB2,BWp'
'N,F3dB1,F3dB2,BWst'
'N,Fc1,Fc2'
'N,Fp1,Fp2,Ap'
'N,Fp1,Fp2,Ast1,Ap,Ast2'
'N,Fst1,Fp1,Fp2,Fst2'
'N,Fst1,Fp1,Fp2,Fst2,Ap'
'N,Fst1,Fst2,Ast'
'Nb,Na,Fst1,Fp1,Fp2,Fst2'

>> d=fdesign.arbmag;
>> set(d,'specification')

ans =

'N,F,A'
'N,B,F,A'

The set command can be used to select one of the available specifications as
follows:

>> d = fdesign.lowpass; % step 1
>> % step 2: get a list of available specifications
>> set (d, 'specification')

3-5

3 Designing a Filter in Fdesign — Process Overview

ans =

'Fp,Fst,Ap,Ast'
'N,F3dB'
'N,F3dB,Ap'
'N,F3dB,Ap,Ast'
'N,F3dB,Ast'
'N,F3dB,Fst'
'N,Fc'
'N,Fc,Ap,Ast'
'N,Fp,Ap'
'N,Fp,Ap,Ast'
'N,Fp,F3dB'
'N,Fp,Fst'
'N,Fp,Fst,Ap'
'N,Fp,Fst,Ast'
'N,Fst,Ap,Ast'
'N,Fst,Ast'
'Nb,Na,Fp,Fst'

>> %step 2: set the required specification
>> set (d, 'specification', 'N,Fc')

If you do not perform this step explicitly, fdesign returns the default
specification for the response you chose in “Select a Response” on page 4-3, and
provides default values for all design parameters included in the specification.

Selecting an Algorithm
The availability of algorithms depends the chosen filter response, the design
parameters, and the availability of the DSP System Toolbox. In other words,
for the same lowpass filter, changing the specification string also changes the
available algorithms. In the following example, for a lowpass filter and a
specification of 'N, Fc', only one algorithm is available—window.

>> %step 2: set the required specification
>> set (d, 'specification', 'N,Fc')
>> designmethods (d) %step3: get available algorithms

3-6

Process Flow Diagram and Filter Design Methodology

Design Methods for class fdesign.lowpass (N,Fc):

window

However, for a specification of 'Fp,Fst,Ap,Ast', a number of algorithms are
available. If the user has only the Signal Processing Toolbox installed, the
following algorithms are available:

>>set (d, 'specification', 'Fp,Fst,Ap,Ast')
>>designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
kaiserwin

If the user additionally has the DSP System Toolbox installed, the number of
available algorithms for this response and specification string increases:

>>set(d,'specification','Fp,Fst,Ap,Ast')
>>designmethods(d)

Design Methods for class fdesign.lowpass (Fp,Fst,Ap,Ast):

butter
cheby1
cheby2
ellip
equiripple
ifir
kaiserwin

3-7

3 Designing a Filter in Fdesign — Process Overview

multistage

The user chooses a particular algorithm and implements the filter with the
design function.

>>Hd=design(d,'butter');

The preceding code actually creates the filter, where Hd is the filter
Implementation Object. This concept is discussed further in the next step.

If you do not perform this step explicitly, design automatically selects the
optimum algorithm for the chosen response and specification.

Customizing the Algorithm
The customization options available for any given algorithm depend not only
on the algorithm itself, selected in “Selecting an Algorithm” on page 3-6,
but also on the specification selected in “Selecting a Specification” on page
3-4. To explore all the available options, type the following at the MATLAB
command prompt:

help (d, 'algorithm-name')

where d is the Filter Specification Object, and algorithm-name is the name of
the algorithm in single quotes, such as 'butter' or 'cheby1'.

The application of these customization options takes place while “Designing
the Filter” on page 3-8, because these options are the properties of the filter
Implementation Object, not the Specification Object.

If you do not perform this step explicitly, the optimum algorithm structure is
selected.

Designing the Filter
This next task introduces a new object, the Filter Object, or dfilt. To create
a filter, use the design command:

>> % design filter w/o specifying the algorithm
>> Hd = design(d);

3-8

Process Flow Diagram and Filter Design Methodology

where Hd is the Filter Object and d is the Specifications Object. This code
creates a filter without specifying the algorithm. When the algorithm is not
specified, the software selects the best available one.

To apply the algorithm chosen in “Selecting an Algorithm” on page 3-6, use
the same design command, but specify the Butterworth algorithm as follows:

>> Hd = design(d, 'butter');

where Hd is the new Filter Object, and d is the Specifications Object.

To obtain help and see all the available options, type:

>> help fdesign/design

This help command describes not only the options for the design command
itself, but also options that pertain to the method or the algorithm. If you
are customizing the algorithm, you apply these options in this step. In the
following example, you design a bandpass filter, and then modify the filter
structure:

>> Hd = design(d, 'butter', 'filterstructure', 'df2sos')

f =

FilterStructure: 'Direct-Form II, Second-Order Sections'
Arithmetic: 'double'
sosMatrix: [7x6 double]

ScaleValues: [8x1 double]
PersistentMemory: false

The filter design step, just like the first task of choosing a response, must be
performed explicitly. A Filter Object is created only when design is called.

Design Analysis
After the filter is designed you may wish to analyze it to determine if the filter
satisfies the design criteria. Filter analysis is broken into three main sections:

• Frequency domain analysis — Includes the magnitude response, group
delay, and pole-zero plots.

3-9

3 Designing a Filter in Fdesign — Process Overview

• Time domain analysis — Includes impulse and step response

• Implementation analysis — Includes quantization noise and cost

To display help for analysis of a discrete-time filter, type:

>> help dfilt/analysis

To display help for analysis of a multirate filter, type:

>> help mfilt/functions

To display help for analysis of a farrow filter, type:

>> help farrow/functions

To analyze your filter, you must explicitly perform this step.

Realize or Apply the Filter to Input Data
After the filter is designed and optimized, it can be used to filter actual input
data. The basic filter command takes input data x, filters it through the Filter
Object, and produces output y:

>> y = filter (FilterObj, x)

This step is never automatically performed for you. To filter your data, you
must explicitly execute this step. To understand how the filtering commands
work, type:

>> help dfilt/filter

Note If you have Simulink®, you have the option of exporting this filter
to a Simulink block using the realizemdl command. To get help on this
command, type:

>> help realizemdl

3-10

4

Designing a Filter in the
Filterbuilder GUI

• “The Graphical Interface to Fdesign” on page 4-2

• “Designing a FIR Filter Using filterbuilder” on page 4-10

4 Designing a Filter in the Filterbuilder GUI

The Graphical Interface to Fdesign

In this section...

“Introduction to Filterbuilder” on page 4-2

“Filterbuilder Design Process” on page 4-2

“Select a Response” on page 4-3

“Select a Specification” on page 4-5

“Select an Algorithm” on page 4-5

“Customize the Algorithm” on page 4-6

“Analyze the Design” on page 4-8

“Realize or Apply the Filter to Input Data” on page 4-8

Introduction to Filterbuilder
The filterbuilder function provides a graphical interface to the fdesign
object-object oriented filter design paradigm and is intended to reduce
development time during the filter design process. filterbuilder uses a
specification-centered approach to find the best algorithm for the desired
response.

Note filterbuilder requires the Signal Processing Toolbox. The
functionality of filterbuilder is greatly expanded by the DSP System
Toolbox. Many of the features described or displayed below are only available
if the DSP System Toolbox is installed. You may verify your installation by
typing ver at the command prompt.

Filterbuilder Design Process
The design process when using filterbuilder is similar to the process
outlined in the section titled Chapter 3, “Designing a Filter in Fdesign —
Process Overview” in the Getting Started guide. The idea is to choose the
constraints and specifications of the filter, and to use those as a starting point
in the design. Postponing the choice of algorithm for the filter allows the
best design method to be determined automatically, based upon the desired

4-2

The Graphical Interface to Fdesign

performance criteria. The following are the details of each of the steps for
designing a filter with filterbuilder.

Select a Response
When you open the filterbuilder tool by typing:

filterbuilder

at the MATLAB command prompt, the Response Selection dialog box
appears, listing all possible filter responses available in DSP System Toolbox
software.

Note This step cannot be skipped because it is not automatically completed
for you by the software. You must select a response to initiate the filter design
process.

After you choose a response, say bandpass, you start the design of the
Specifications Object, and the Bandpass Design dialog box appears.
This dialog box contains a Main pane, a Data Types pane and a Code
Generation pane. The specifications of your filter are generally set in the
Main pane of the dialog box.

4-3

4 Designing a Filter in the Filterbuilder GUI

The Data Types pane provides settings for precision and data types, and the
Code Generation pane contains options for various implementations of
the completed filter design.

For the initial design of your filter, you will mostly use theMain pane.

4-4

The Graphical Interface to Fdesign

The Bandpass Design dialog box contains all the parameters you need to
determine the specifications of a bandpass filter. The parameters listed in
the Main pane depend upon the type of filter you are designing. However,
no matter what type of filter you have chosen in the Response Selection
dialog box, the filter design dialog box contains the Main, Data Types, and
Code Generation panes.

Select a Specification
To choose the specification for the bandpass filter, you can begin by selecting
an Impulse Response, Order Mode, and Filter Type in the Filter
Specifications frame of the Main Pane. You can further specify the
response of your filter by setting frequency and magnitude specifications in
the appropriate frames on the Main Pane.

Note Frequency, Magnitude, and Algorithm specifications are
interdependent and may change based upon your Filter Specifications
selections. When choosing specifications for your filter, select your Filter
Specifications first and work your way down the dialog box- this approach
ensures that the best settings for dependent specifications display as available
in the dialog box.

Select an Algorithm
The algorithms available for your filter depend upon the filter response and
design parameters you have selected in the previous steps. For example, in the
case of a bandpass filter, if the impulse response selected is IIR and the Order
Mode field is set toMinimum, the design methods available is Butterworth,
Chebyshev type I or II, or Elliptic, whereas if the Order Mode field is set
to Specify, the design method available is IIR least p-norm.

4-5

4 Designing a Filter in the Filterbuilder GUI

Customize the Algorithm
By expanding the Design options section of the Algorithm frame, you
can further customize the algorithm specified. The options available will
depend upon the algorithm and settings that have already been selected in
the dialog box. In the case of a bandpass IIR filter using the Butterworth

4-6

The Graphical Interface to Fdesign

method, design options such as Match Exactly are available, as shown in
the following figure.

4-7

4 Designing a Filter in the Filterbuilder GUI

Analyze the Design
To analyze the filter response, click on the View Filter Response button. The
Filter Visualization Tool opens displaying the magnitude plot of the filter
response.

Realize or Apply the Filter to Input Data
When you have achieved the desired filter response through design iterations
and analysis using the Filter Visualization Tool, apply the filter to the
input data. Again, this step is never automatically performed for you by the
software. To filter your data, you must explicitly execute this step. In the
Filter Visualization Tool, click OK and DSP System Toolbox software
creates the filter object with the name specified in the Save variable as field
and exports it to the MATLAB workspace.

The filter is then ready to be used to filter actual input data. The basic filter
command takes input data x, filters it through the Filter Object, and produces
output y:

>> y = filter (FilterObj, x)

To understand how the filtering commands work, type:

>> help dfilt/filter

4-8

The Graphical Interface to Fdesign

Tip If you have Simulink, you have the option of exporting this filter to
a Simulink block using the realizemdl command. To get help on this
command, type:

>> help realizemdl

4-9

4 Designing a Filter in the Filterbuilder GUI

Designing a FIR Filter Using filterbuilder

FIR Filter Design

Example – Using Filterbuilder to Design a Finite Impulse Response
(FIR) Filter
To design a lowpass FIR filter using filterbuilder:

1 Open the Filterbuilder GUI by typing the following at the MATLAB prompt:

filterbuilder

The Response Selection dialog box appears. In this dialog box, you can
select from a list of filter response types. Select Lowpass in the list box.

2 Hit the OK button. The Lowpass Design dialog box opens. Here you
can specify the writable parameters of the Lowpass filter object. The
components of the Main frame of this dialog box are described in the
section titled Lowpass Filter Design Dialog Box — Main Pane. In the dialog
box, make the following changes:

• Enter a Fpass value of 0.55.

• Enter a Fstop value of 0.65.

4-10

Designing a FIR Filter Using filterbuilder

3 Click Apply, and the following message appears at the MATLAB prompt:

The variable 'Hlp' has been exported to the command window.

4-11

4 Designing a Filter in the Filterbuilder GUI

4 To check your design, click View Filter Response. The Filter
Visualization tool appears, showing a plot of the magnitude response of
the filter.

You can change the design and click Apply, followed by View Filter
Response, as many times as needed until your design specifications are
met.

4-12

5

FDATool: A Filter Design
and Analysis GUI

• “Overview” on page 5-2

• “Opening FDATool” on page 5-7

• “Choosing a Response Type” on page 5-8

• “Choosing a Filter Design Method” on page 5-9

• “Setting the Filter Design Specifications” on page 5-10

• “Computing the Filter Coefficients” on page 5-15

• “Analyzing the Filter” on page 5-16

• “Editing the Filter Using the Pole/Zero Editor” on page 5-23

• “Converting the Filter Structure” on page 5-27

• “Importing a Filter Design” on page 5-30

• “Exporting a Filter Design” on page 5-35

• “Generating a C Header File” on page 5-43

• “Generating MATLAB Code” on page 5-45

• “Managing Filters in the Current Session” on page 5-47

• “Saving and Opening Filter Design Sessions” on page 5-49

5 FDATool: A Filter Design and Analysis GUI

Overview

In this section...

“Introduction to FDA Tool” on page 5-2

“Integrated Products” on page 5-2

“Filter Design Methods” on page 5-3

“Using the Filter Design and Analysis Tool” on page 5-4

“Analyzing Filter Responses” on page 5-5

“Filter Design and Analysis Tool Panels” on page 5-5

“Getting Help” on page 5-6

Introduction to FDA Tool
The Filter Design and Analysis Tool (FDATool) is a user interface for
designing and analyzing filters quickly. FDATool enables you to design digital
FIR or IIR filters by setting filter specifications, by importing filters from
your MATLAB workspace, or by adding, moving or deleting poles and zeros.
FDATool also provides tools for analyzing filters, such as magnitude and
phase response and pole-zero plots.

Integrated Products
FDATool seamlessly integrates additional functionality from other
MathWorks® products as described in the following table.

Product Added Features

Filter Design HDL Coder™ Generate synthesizable VHDL or
Verilog for fixed-point filters

“DSP System Toolbox” • Advanced FIR and IIR design
techniques (see “Advanced Filter
Design Methods” on page 5-4)

• Filter transformations

• Multirate filters

5-2

Overview

Product Added Features

• Fixed-point filters (available only
with Simulink® Fixed Point™
product)

“Embedded Coder” Export code usable by Code
Composer Studio™ software

Simulink Generate filters from atomic
Simulink blocks

Filter Design Methods
FDATool gives you access to the following Signal Processing Toolbox filter
design methods.

Design Method Function

Butterworth butter

Chebyshev Type I cheby1

Chebyshev Type II cheby2

Elliptic ellip

Maximally Flat maxflat

Equiripple firpm

Least-squares firls

Constrained least-squares fircls

Complex equiripple cfirpm

Window fir1

When using the window method in FDATool, all Signal Processing Toolbox
window functions are available, and you can specify a user-defined window by
entering its function name and input parameter.

5-3

5 FDATool: A Filter Design and Analysis GUI

Advanced Filter Design Methods
The following advanced filter design methods are available if you have DSP
System Toolbox software.

Design Method Function

Constrained equiripple FIR firceqrip

Constrained-band equiripple FIR fircband

Generalized remez FIR firgr

Equripple halfband FIR firhalfband

Least P-norm optimal FIR firlpnorm

Equiripple Nyquist FIR firnyquist

Interpolated FIR ifir

IIR comb notching or peaking iircomb

Allpass filter (given group delay) iirgrpdelay

Least P-norm optimal IIR iirlpnorm

Constrained least P-norm IIR iirlpnormc

Second-order IIR notch iirnotch

Second-order IIR peaking (resonator) iirpeak

Using the Filter Design and Analysis Tool
There are different ways that you can design filters using the Filter Design
and Analysis Tool. For example:

• You can first choose a response type, such as bandpass, and then choose
from the available FIR or IIR filter design methods.

• You can specify the filter by its type alone, along with certain frequency-
or time-domain specifications such as passband frequencies and stopband
frequencies. The filter you design is then computed using the default filter
design method and filter order.

5-4

Overview

Analyzing Filter Responses
Once you have designed your filter, you can display the filter coefficients
and detailed filter information, export the coefficients to the MATLAB
workspace, and create a C header file containing the coefficients, and analyze
different filter responses in FDATool or in a separate Filter Visualization Tool
(fvtool). The following filter responses are available:

• Magnitude response (freqz)

• Phase response (phasez)

• Group delay (grpdelay)

• Phase delay (phasedelay)

• Impulse response (impz)

• Step response (stepz)

• Pole-zero plots (zplane)

• Zero-phase response (zerophase)

Filter Design and Analysis Tool Panels
The Filter Design and Analysis Tool has sidebar buttons that display
particular panels in the lower half of the tool. The panels are

• Design Filter. See “Choosing a Filter Design Method” on page 5-9 for more
information. You use this panel to

- Design filters from scratch.

- Modify existing filters designed in FDATool.

- Analyze filters.

• Import filter. See “Importing a Filter Design” on page 5-30 for more
information. You use this panel to

- Import previously saved filters or filter coefficients that you have stored
in the MATLAB workspace.

- Analyze imported filters.

5-5

5 FDATool: A Filter Design and Analysis GUI

• Pole/Zero Editor. See “Editing the Filter Using the Pole/Zero Editor” on
page 5-23. You use this panel to add, delete, and move poles and zeros
in your filter design.

If you also have DSP System Toolbox product installed, additional panels
are available:

• Set quantization parameters — Use this panel to quantize double-precision
filters that you design in FDATool, quantize double-precision filters that
you import into FDATool, and analyze quantized filters.

• Transform filter — Use this panel to change a filter from one response
type to another.

• Multirate filter design — Use this panel to create a multirate filter
from your existing FIR design, create CIC filters, and linear and hold
interpolators.

If you have Simulink installed, this panel is available:

• Realize Model — Use this panel to create a Simulink block containing the
filter structure. See “Exporting to a Simulink Model” on page 5-38 for more
information.

Getting Help

At any time, you can right-click or click theWhat’s this? button, , to get
information on the different parts of the tool. You can also use the Help
menu to see complete Help information.

5-6

Opening FDATool

Opening FDATool
To open FDATool, type

fdatool

at the MATLAB command prompt.

The Filter Design and Analysis Tool opens with the Design Filter panel
displayed.

Note that when you open FDATool, Design Filter is not enabled. You must
make a change to the default filter design in order to enable Design Filter.
This is true each time you want to change the filter design. Changes to
radio button items or drop down menu items such as those under Response
Type or Filter Order enable Design Filter immediately. Changes to
specifications in text boxes such as Fs, Fpass, and Fstop require you to click
outside the text box to enable Design Filter.

5-7

5 FDATool: A Filter Design and Analysis GUI

Choosing a Response Type
You can choose from several response types:

• Lowpass

• Raised cosine

• Highpass

• Bandpass

• Bandstop

• Differentiator

• Multiband

• Hilbert transformer

• Arbitrary magnitude

Additional response types are available if you have the “DSP System Toolbox”
software installed.

To design a bandpass filter, select the radio button next to Bandpass in
the Response Type region of the GUI.

Note Not all filter design methods are available for all response types. Once
you choose your response type, this may restrict the filter design methods
available to you. Filter design methods that are not available for a selected
response type are removed from the Design Method region of the GUI.

5-8

Choosing a Filter Design Method

Choosing a Filter Design Method
You can use the default filter design method for the response type that you’ve
selected, or you can select a filter design method from the available FIR and
IIR methods listed in the GUI.

To select the Remez algorithm to compute FIR filter coefficients, select the
FIR radio button and choose Equiripple from the list of methods.

5-9

5 FDATool: A Filter Design and Analysis GUI

Setting the Filter Design Specifications

In this section...

“Viewing Filter Specifications” on page 5-10

“Filter Order” on page 5-10

“Options” on page 5-11

“Bandpass Filter Frequency Specifications” on page 5-12

“Bandpass Filter Magnitude Specifications” on page 5-13

Viewing Filter Specifications
The filter design specifications that you can set vary according to response
type and design method. The display region illustrates filter specifications
when you select Analysis > Filter Specifications or when you click the
Filter Specifications toolbar button.

You can also view the filter specifications on the Magnitude plot of a designed
filter by selecting View > Specification Mask.

Filter Order
You have two mutually exclusive options for determining the filter order
when you design an equiripple filter:

5-10

Setting the Filter Design Specifications

• Specify order: You enter the filter order in a text box.

• Minimum order: The filter design method determines the minimum
order filter.

Select the Minimum order radio button for this example.

Note that filter order specification options depend on the filter design method
you choose. Some filter methods may not have both options available.

Options
The available options depend on the selected filter design method. Only
the FIR Equiripple and FIR Window design methods have settable options.
For FIR Equiripple, the option is a Density Factor. See firpm for more
information. For FIR Window the options are Scale Passband, Window
selection, and for the following windows, a settable parameter:

Window Parameter

Chebyshev (chebwin) Sidelobe attenuation

Gaussian (gausswin) Alpha

Kaiser (kaiser) Beta

Taylor (taylorwin) Nbar and Sidelobe level

Tukey (tukeywin) Alpha

User Defined Function Name, Parameter

You can view the window in the Window Visualization Tool (wvtool) by
clicking the View button.

5-11

5 FDATool: A Filter Design and Analysis GUI

For this example, set the Density factor to 16.

Bandpass Filter Frequency Specifications
For a bandpass filter, you can set

• Units of frequency:

- Hz

- kHz

- MHz

- Normalized (0 to 1)

• Sampling frequency

• Passband frequencies

• Stopband frequencies

You specify the passband with two frequencies. The first frequency
determines the lower edge of the passband, and the second frequency
determines the upper edge of the passband.

Similarly, you specify the stopband with two frequencies. The first frequency
determines the upper edge of the first stopband, and the second frequency
determines the lower edge of the second stopband.

For this example:

• Keep the units in Hz (default).

• Set the sampling frequency (Fs) to 2000 Hz.

5-12

Setting the Filter Design Specifications

• Set the end of the first stopband (Fstop1) to 200 Hz.

• Set the beginning of the passband (Fpass1) to 300 Hz.

• Set the end of the passband (Fpass2) to 700 Hz.

• Set the beginning of the second stopband (Fstop2) to 800 Hz.

Bandpass Filter Magnitude Specifications
For a bandpass filter, you can specify the following magnitude response
characteristics:

• Units for the magnitude response (dB or linear)

• Passband ripple

• Stopband attenuation

For this example:

• Keep Units in dB (default).

• Set the passband ripple (Apass) to 0.1 dB.

• Set the stopband attenuation for both stopbands (Astop1, Astop2) to 75
dB.

5-13

5 FDATool: A Filter Design and Analysis GUI

5-14

Computing the Filter Coefficients

Computing the Filter Coefficients
Now that you’ve specified the filter design, click the Design Filter button to
compute the filter coefficients.

Notice that the Design Filter button is disabled once you’ve computed the
coefficients for your filter design. This button is enabled again once you make
any changes to the filter specifications.

5-15

5 FDATool: A Filter Design and Analysis GUI

Analyzing the Filter

In this section...

“Displaying Filter Responses” on page 5-16

“Using Data Tips” on page 5-18

“Drawing Spectral Masks” on page 5-19

“Changing the Sampling Frequency” on page 5-20

“Displaying the Response in FVTool” on page 5-21

Displaying Filter Responses
You can view the following filter response characteristics in the display region
or in a separate window (see “Displaying Filter Responses” on page 5-16):

• Magnitude response

• Phase response

• Magnitude and Phase responses

• Group delay response

• Phase delay response

• Impulse response

• Step response

• Pole-zero plot

• Zero-phase response — available from the y-axis context menu in a
Magnitude or Magnitude and Phase response plot.

If you have DSP System Toolbox product installed, two other analyses are
available: magnitude response estimate and round-off noise power. These two
analyses are the only ones that use filter internals.

For descriptions of the above responses and their associated toolbar buttons
and other FDATool toolbar buttons, see fvtool.

5-16

Analyzing the Filter

You can display two responses in the same plot by selecting
Analysis > Overlay Analysis and selecting an available response. A second
y-axis is added to the right side of the response plot. (Note that not all
responses can be overlaid on each other.)

You can also display the filter coefficients and detailed filter information in
this region.

For all the analysis methods, except zero-phase response, you can access
them from the Analysis menu, the Analysis Parameters dialog box from the
context menu, or by using the toolbar buttons. For zero-phase, right-click the
y-axis of the plot and select Zero-phase from the context menu.

For example, to look at the filter’s magnitude response, select theMagnitude
Response button on the toolbar.

You can also overlay the filter specifications on the Magnitude plot by
selecting View > Specification Mask.

5-17

5 FDATool: A Filter Design and Analysis GUI

Note You can use specification masks in FVTool only if FVTool was launched
from FDATool.

Using Data Tips
You can click the response to add plot data tips that display information
about particular points on the response.

5-18

Analyzing the Filter

For information on using data tips, see “Data Cursor — Displaying Data
Values Interactively” in the MATLAB documentation.

Drawing Spectral Masks
To add spectral masks or rejection area lines to your magnitude plot, click
View > User-defined Spectral Mask.

The mask is defined by a frequency vector and a magnitude vector. These
vectors must be the same length.

• Enable Mask — Select to turn on the mask display.

• Normalized Frequency — Select to normalize the frequency between 0
and 1 across the displayed frequency range.

• Frequency Vector— Enter a vector of x-axis frequency values.

• Magnitude Units — Select the desired magnitude units. These units
should match the units used in the magnitude plot.

• Magnitude Vector— Enter a vector of y-axis magnitude values.

The magnitude response below shows a spectral mask.

5-19

5 FDATool: A Filter Design and Analysis GUI

Changing the Sampling Frequency
To change the sampling frequency of your filter, right-click any filter response
plot and select Sampling Frequency from the context menu.

To change the filter name, type the new name in Filter name. (In fvtool,
if you have multiple filters, select the desired filter and then enter the new
name.)

To change the sampling frequency, select the desired unit from Units and
enter the sampling frequency in Fs. (For each filter in fvtool, you can specify
a different sampling frequency or you can apply the sampling frequency to all
filters.)

5-20

Analyzing the Filter

To save the displayed parameters as the default values to use when FDATool
or FVTool is opened, click Save as Default.

To restore the default values, click Restore Original Defaults.

Displaying the Response in FVTool
To display the filter response characteristics in a separate window, select
View > Filter Visualization Tool (available if any analysis, except the
filter specifications, is in the display region) or click the Full View Analysis

button:

This launches the Filter Visualization Tool (fvtool).

Note If Filter Specifications are shown in the display region, clicking the
Full View Analysis toolbar button launches a MATLAB figure window
instead of FVTool. The associated menu item is Print to figure, which is
enabled only if the filter specifications are displayed.

You can use this tool to annotate your design, view other filter characteristics,
and print your filter response. You can link FDATool and FVTool so that
changes made in FDATool are immediately reflected in FVTool. See fvtool
for more information.

5-21

5 FDATool: A Filter Design and Analysis GUI

5-22

Editing the Filter Using the Pole/Zero Editor

Editing the Filter Using the Pole/Zero Editor

In this section...

“Displaying the Pole-Zero Plot” on page 5-23

“Changing the Pole-Zero Plot” on page 5-24

Displaying the Pole-Zero Plot
You can edit a designed or imported filter’s coefficients by moving, deleting, or
adding poles and/or zeros using the Pole/Zero Editor panel.

Note You cannot generate MATLAB code (File > Generate MATLAB
code) if your filter was designed or edited with the Pole/Zero Editor.

You cannot move quantized poles and zeros. You can only move the reference
poles and zeros.

Click the Pole/Zero Editor button in the sidebar or select Edit > Pole/Zero
Editor to display this panel.

5-23

5 FDATool: A Filter Design and Analysis GUI

Poles are shown using x symbols and zeros are shown using o symbols.

Changing the Pole-Zero Plot
Plot mode buttons are located to the left of the pole/zero plot. Select one of the
buttons to change the mode of the pole/zero plot. The Pole/Zero Editor has
these buttons from left to right: move pole, add pole, add zero, and delete
pole or zero.

The following plot parameters and controls are located to the left of the
pole/zero plot and below the plot mode buttons.

5-24

Editing the Filter Using the Pole/Zero Editor

• Filter gain— factor to compensate for the filter’s pole(s) and zero(s) gains

• Coordinates— units (Polar or Rectangular) of the selected pole or zero

• Magnitude — if polar coordinates is selected, magnitude of the selected
pole or zero

• Angle— if polar coordinates is selected, angle of selected pole(s) or zero(s)

• Real — if rectangular coordinates is selected, real component of selected
pole(s) or zero(s)

• Imaginary— if rectangular coordinates is selected, imaginary component
of selected pole or zero

• Section— for multisection filters, number of the current section

• Conjugate — creates a corresponding conjugate pole or zero or
automatically selects the conjugate pole or zero if it already exists.

• Auto update— immediately updates the displayed magnitude response
when poles or zeros are added, moved, or deleted.

The Edit > Pole/Zero Editor has items for selecting multiple poles/zeros,
for inverting and mirroring poles/zeros, and for deleting, scaling and rotating
poles/zeros.

5-25

5 FDATool: A Filter Design and Analysis GUI

Moving one of the zeros on the vertical axis produces the following result:

• The selected zero pair is shown in green.

• When you select one of the zeros from a conjugate pair, the Conjugate check
box and the conjugate are automatically selected.

• The Magnitude Response plot updates immediately because Auto update
is active.

5-26

Converting the Filter Structure

Converting the Filter Structure

In this section...

“Converting to a New Structure” on page 5-27

“Converting to Second-Order Sections” on page 5-28

Converting to a New Structure
You can use Edit > Convert Structure to convert the current filter to a new
structure. All filters can be converted to the following representations:

• Direct-form I

• Direct-form II

• Direct-form I transposed

• Direct-form II transposed

• Lattice ARMA

Note If you have DSP System Toolbox product installed, you will see
additional structures in the Convert structure dialog box.

In addition, the following conversions are available for particular classes
of filters:

• Minimum phase FIR filters can be converted to Lattice minimum phase

• Maximum phase FIR filters can be converted to Lattice maximum phase

• Allpass filters can be converted to Lattice allpass

• IIR filters can be converted to Lattice ARMA

5-27

5 FDATool: A Filter Design and Analysis GUI

Note Converting from one filter structure to another may produce a result
with different characteristics than the original. This is due to the computer’s
finite-precision arithmetic and the variations in the conversion’s roundoff
computations.

For example:

• Select Edit > Convert Structure to open the Convert structure dialog box.

• Select Direct-form I in the list of filter structures.

Converting to Second-Order Sections
You can use Edit > Convert to Second-Order Sections to store the
converted filter structure as a collection of second-order sections rather than
as a monolithic higher-order structure.

Note The following options are also used for Edit > Reorder and Scale
Scale Second-Order Sections, which you use to modify an SOS filter
structure.

5-28

Converting the Filter Structure

The following Scale options are available when converting a direct-form II
structure only:

• None (default)

• L-2 (L2 norm)

• L-infinity (L∞ norm)

The Direction (Up or Down) determines the ordering of the second-order
sections. The optimal ordering changes depending on the Scale option
selected.

For example:

• Select Edit > Convert to Second-Order Sections to open the Convert to
SOS dialog box.

• Select L-infinity from the Scale menu for L∞ norm scaling.

• Leave Up as the Direction option.

Note To convert from second-order sections back to a single section, use
Edit > Convert to Single Section.

5-29

5 FDATool: A Filter Design and Analysis GUI

Importing a Filter Design

In this section...

“Import Filter Panel” on page 5-30

“Filter Structures” on page 5-32

Import Filter Panel
The Import Filter panel allows you to import a filter. You can access this
region by clicking the Import Filter button in the sidebar.

The imported filter can be in any of the representations listed in the Filter
Structure pull-down menu and described in “Filter Structures” on page 5-32.
You can import a filter as second-order sections by selecting the check box.

Specify the filter coefficients in Numerator and Denominator, either
by entering them explicitly or by referring to variables in the MATLAB
workspace.

Select the frequency units from the following options in the Units menu, and
for any frequency unit other than Normalized, specify the value or MATLAB
workspace variable of the sampling frequency in the Fs field.

To import the filter, click the Import Filter button. The display region is
automatically updated when the new filter has been imported.

5-30

Importing a Filter Design

You can edit the imported filter using the Pole/Zero Editor panel (see “Editing
the Filter Using the Pole/Zero Editor” on page 5-23).

5-31

5 FDATool: A Filter Design and Analysis GUI

Filter Structures
The available filter structures are:

• “Direct-form” on page 5-32 , which includes direct-form I, direct-form II,
direct-form I transposed, direct-form II transposed, and direct-form FIR

• “Lattice” on page 5-33, which includes lattice allpass, lattice MA min phase,
lattice MA max phase, and lattice ARMA

• “Discrete-time Filter (dfilt object)” on page 5-34 (dfilt object)

The structure that you choose determines the type of coefficients that you
need to specify in the text fields to the right.

Direct-form
For direct-form I, direct-form II, direct-form I transposed, and direct-form II
transposed, specify the filter by its transfer function representation

H z
b b z b z b m z

a a z a Z

m
()

() () () ()

() () ()

1 2 3 1

1 2 3

1 2

1 3 aa n z n() 1

• The Numerator field specifies a variable name or value for the numerator
coefficient vector b, which contains m+1 coefficients in descending powers
of z.

• The Denominator field specifies a variable name or value for the
denominator coefficient vector a, which contains n+1 coefficients in
descending powers of z. For FIR filters, the Denominator is 1.

Filters in transfer function form can be produced by all of the Signal
Processing Toolbox filter design functions (such as fir1, fir2, firpm, butter,
yulewalk). See “Transfer Function” on page 1-23 for more information.

Importing as second-order sections. For all direct-form structures,
except direct-form FIR, you an import the filter in its second-order section
representation:

5-32

Importing a Filter Design

H z G
b b z b z

a a z a z
k k k

k k kk

L
()

 0 1

1
2

2

0 1
1

2
2

1

The Gain field specifies a variable name or a value for the gain G, and the
SOS Matrix field specifies a variable name or a value for the L-by-6 SOS
matrix

SOS

b b b a a
b b b a a

b b bL L L

01 11 21 11 22

02 12 22 12 22

0 1 2

1
1

1

· · · · · ·
· · · · · ·

aa aL L1 2

whose rows contain the numerator and denominator coefficients bik and aik
of the second-order sections of H(z).

Filters in second-order section form can be produced by functions such as
tf2sos, zp2sos, ss2sos, and sosfilt. See “Second-Order Sections (SOS)”
on page 1-27for more information.

Lattice
For lattice allpass, lattice minimum and maximum phase, and lattice ARMA
filters, specify the filter by its lattice representation:

• For lattice allpass, the Lattice coeff field specifies the lattice (reflection)
coefficients, k(1) to k(N), where N is the filter order.

• For lattice MA (minimum or maximum phase), the Lattice coeff field
specifies the lattice (reflection) coefficients, k(1) to k(N), where N is the
filter order.

• For lattice ARMA, the Lattice coeff field specifies the lattice (reflection)
coefficients, k(1) to k(N), and the Ladder coeff field specifies the ladder
coefficients, v(1) to v(N+1), where N is the filter order.

Filters in lattice form can be produced by tf2latc. See “Lattice Structure”
on page 1-28 for more information.

5-33

5 FDATool: A Filter Design and Analysis GUI

Discrete-time Filter (dfilt object)
For Discrete-time filter, specify the name of the dfilt object. See dfilt for
more information.

Multirate Filter (mfilt object)
For Multirate filter, specify the name of the mfilt object. See mfilt in the
DSP System Toolbox product for more information.

5-34

Exporting a Filter Design

Exporting a Filter Design

In this section...

“Exporting Coefficients or Objects to the Workspace” on page 5-35

“Exporting Coefficients to an ASCII File” on page 5-36

“Exporting Coefficients or Objects to a MAT-File” on page 5-37

“Exporting to SPTool” on page 5-37

“Exporting to a Simulink Model” on page 5-38

“Other Ways to Export a Filter” on page 5-42

Exporting Coefficients or Objects to the Workspace
You can save the filter either as filter coefficients variables or as a dfilt or
mfilt filter object variable. (Note that you must have DSP System Toolbox
product installed to save as an mfilt.) To save the filter to the MATLAB
workspace:

1 Select File > Export. The Export dialog box appears.

2 Select Workspace from the Export To menu.

3 Select Coefficients from the Export As menu to save the filter
coefficients or select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator (for FIR
filters) or Numerator and Denominator (for IIR filters), or SOS Matrix
and Scale Values (for IIR filters in second-order section form) text boxes
in the Variable Names region.

For objects, assign the variable name in the Discrete Filter (or
Quantized Filter) text box. If you have variables with the same names
in your workspace and you want to overwrite them, select the Overwrite
Variables check box.

5 Click the Export button.

5-35

5 FDATool: A Filter Design and Analysis GUI

Exporting Coefficients to an ASCII File
To save filter coefficients to a text file,

1 Select File > Export. The Export dialog box appears.

2 Select Coefficients File (ASCII) from the Export To menu.

3 Click the Export button. The Export Filter Coefficients to .FCF File dialog
box appears.

4 Choose or enter a filename and click the Save button.

5-36

Exporting a Filter Design

The coefficients are saved in the text file that you specified, and the MATLAB
Editor opens to display the file. The text file also contains comments with the
MATLAB version number, the Signal Processing Toolbox version number,
and filter information.

Exporting Coefficients or Objects to a MAT-File
To save filter coefficients or a filter object as variables in a MAT-file:

1 Select File > Export. The Export dialog box appears.

2 Select MAT-file from the Export To menu.

3 Select Coefficients from the Export As menu to save the filter
coefficients or select Objects to save the filter in a filter object.

4 For coefficients, assign variable names using the Numerator (for FIR
filters) or Numerator and Denominator (for IIR filters), or SOS Matrix
and Scale Values (for IIR filters in second-order section form) text boxes
in the Variable Names region.

For objects, assign the variable name in the Discrete Filter (or
Quantized Filter) text box. If you have variables with the same names
in your workspace and you want to overwrite them, select the Overwrite
Variables check box.

5 Click the Export button. The Export to a MAT-File dialog box appears.

6 Choose or enter a filename and click the Save button.

See also “Saving and Opening Filter Design Sessions” on page 5-49.

Exporting to SPTool
You may want to use your designed filter in SPTool to do signal processing
and analysis.

5-37

5 FDATool: A Filter Design and Analysis GUI

Note The magnitude response you see in SPTool will differ from the one in
FDATool because the sampling frequency is preset at Fs = 2 when a filter is
exported from FDATool to SPTool.

1 Select File > Export. The Export dialog box appears.

2 Select SPTool from the Export To menu.

3 Assign the variable name in the Discrete Filter (or Quantized Filter)
text box. If you have variables with the same names in your workspace and
you want to overwrite them, select the Overwrite Variables check box.

4 Click the Export button.

SPTool opens and the current FDATool filter appears in the Filter area list
as the specified variable name followed by (Imported).

Note If you are using the DSP System Toolbox software and export a
quantized filter, only the values of its quantized coefficients are exported.
The reference coefficients are not exported. SPTool does not restrict the
coefficient values, so if you edit them in SPTool by moving poles or zeros,
the filter will no longer be in quantized form.

Exporting to a Simulink Model
If you have the Simulink product installed, you can export a Simulink block of
your filter design and insert it into a new or existing Simulink model.

You can export a filter designed using any filter design method available
in FDATool.

Note If you have the DSP System Toolbox and Fixed-Point Toolbox™
installed, you can export a CIC filter to a Simulink model.

5-38

Exporting a Filter Design

1 After designing your filter, click theRealize Model sidebar button or select
File > Export to Simulink Model. The Realize Model panel is displayed.

2 Specify the name to use for your block in Block name.

3 To insert the block into the current (most recently selected) Simulink
model, set the Destination to Current. To inset the block into a new
model, select New.

4 If you want to overwrite a block previously created from this panel, check
Overwrite generated ‘Filter’ block.

5 If you select the Build model using basic elements check box, your filter
is created as a subsystem block, which uses separate sub-elements. In this
mode, the following optimization(s) are available:

• Optimize for zero gains — Removes zero-valued gain paths from
the filter structure.

• Optimize for unity gains — Substitutes a wire (short circuit) for
gains equal to 1 in the filter structure.

• Optimize for negative gains— Substitutes a wire (short circuit) for
gains equal to -1 and changes corresponding additions to subtractions in
the filter structure.

• Optimize delay chains— Substitutes delay chains composed of n unit
delays with a single delay of n.

• Optimize for unity scale values — Removes multiplications for
scale values equal to 1 from the filter structure.

5-39

5 FDATool: A Filter Design and Analysis GUI

The following illustration shows the effects of some of the optimizations:

Optimization Effects

Note The Build model using basic elements check box is enabled
only when you have a DSP System Toolbox license and your filter can be
designed using a Digital Filter block. For more information, see the Filter
Realization Wizard topic in the DSP System Toolbox documentation.

5-40

Exporting a Filter Design

6 Set the Input processing parameter to specify whether the generated
filter performs sample- or frame-based processing on the input. Depending
on the type of filter you design, one or both of the following options may
be available:

• Columns as channels (frame based)— When you select this option,
the block treats each column of the input as a separate channel.

• Elements as channels (sample based) — When you select this
option, the block treats each element of the input as a separate channel.

7 Click the Realize Model button to create the filter block. When the Build
model using basic elements check box is selected, FDATool implements
the filter as a subsystem block using Sum, Gain, and Delay blocks.

If you double-click the Simulink Filter block, the filter structure is displayed.
The following figure shows the first section of the default four-section, direct
form II filter.

5-41

5 FDATool: A Filter Design and Analysis GUI

Other Ways to Export a Filter
You can also send your filter to a C header file or generate MATLAB code to
construct your filter from the command line. For detailed instructions, see
the following sections:

• “Generating a C Header File” on page 5-43

• “Generating MATLAB Code” on page 5-45

5-42

Generating a C Header File

Generating a C Header File
You may want to include filter information in an external C program. To
create a C header file with variables that contain filter parameter data,
follow this procedure:

1 Select Targets > Generate C Header. The Generate C Header dialog
box appears.

2 Enter the variable names to be used in the C header file. The particular
filter structure determines the variables that are created in the file

Filter Structure Variable Parameter

Direct-form I
Direct-form II
Direct-form I
transposed
Direct-form II
transposed

Numerator, Numerator length*, Denominator,
Denominator length*, and Number of sections
(inactive if filter has only one section)

Lattice ARMA Lattice coeffs, Lattice coeffs length*, Ladder
coeffs, Ladder coeffs length*, Number of sections
(inactive if filter has only one section)

5-43

5 FDATool: A Filter Design and Analysis GUI

Filter Structure Variable Parameter

Lattice MA Lattice coeffs, Lattice coeffs length*, and Number
of sections (inactive if filter has only one section)

Direct-form FIR
Direct-form FIR
transposed

Numerator, Numerator length*, and Number of
sections (inactive if filter has only one section)

*length variables contain the total number of coefficients of that type.

Note Variable names cannot be C language reserved words, such as “for.”

3 Select Export Suggested to use the suggested data type or select Export
As and select the desired data type from the pull-down.

Note If you do not have DSP System Toolbox software installed, selecting
any data type other than double-precision floating point results in a filter
that does not exactly match the one you designed in the FDATool. This is
due to rounding and truncating differences.

4 Click OK to save the file and close the dialog box or click Apply to save the
file, but leave the dialog box open for additional C header file definitions.

5-44

Generating MATLAB® Code

Generating MATLAB Code
You can generate MATLAB code that constructs the filter you designed in
FDATool from the command line. Select File > Generate MATLAB code
and specify the filename in the Generate MATLAB code dialog box.

Note You cannot generate MATLAB code (File > Generate MATLAB
code) if your filter was designed or edited with the Pole/Zero Editor.

The following is generated MATLAB code for the default lowpass filter in
FDATool.

function Hd = ExFilter

%EXFILTER Returns a discrete-time filter object.

%

% MATLAB Code

% Generated by MATLAB(R) 7.11 and the Signal Processing Toolbox 6.14.

%

% Generated on: 17-Feb-2010 14:15:37

%

% Equiripple Lowpass filter designed using the FIRPM function.

% All frequency values are in Hz.

Fs = 48000; % Sampling Frequency

Fpass = 9600; % Passband Frequency

Fstop = 12000; % Stopband Frequency

Dpass = 0.057501127785; % Passband Ripple

Dstop = 0.0001; % Stopband Attenuation

dens = 20; % Density Factor

% Calculate the order from the parameters using FIRPMORD.

[N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], [Dpass, Dstop]);

% Calculate the coefficients using the FIRPM function.

b = firpm(N, Fo, Ao, W, {dens});

5-45

5 FDATool: A Filter Design and Analysis GUI

Hd = dfilt.dffir(b);

% [EOF]

5-46

Managing Filters in the Current Session

Managing Filters in the Current Session
You can store filters designed in the current FDATool session for cascading
together, exporting to FVTool or for recalling later in the same or future
FDATool sessions.

You store and access saved filters with the Store filter and Filter Manager
buttons, respectively, in the Current Filter Information pane.

Store Filter — Displays the Store Filter dialog box in which you specify the
filter name to use when storing the filter in the Filter Manager. The default
name is the type of the filter.

Filter Manager — Opens the Filter Manager.

5-47

5 FDATool: A Filter Design and Analysis GUI

The current filter is listed below the listbox. To change the current filter,
highlight the desired filter. If you select Edit current filter, FDATool
displays the currently selected filter specifications. If you make any changes
to the specifications, the stored filter is updated immediately.

To cascade two or more filters, highlight the desired filters and press
Cascade. A new cascaded filter is added to the Filter Manager.

To change the name of a stored filter, press Rename. The Rename filter
dialog box is displayed.

To remove a stored filter from the Filter Manager, press Delete.

To export one or more filters to FVTool, highlight the filter(s) and press
FVTool.

5-48

Saving and Opening Filter Design Sessions

Saving and Opening Filter Design Sessions
You can save your filter design session as a MAT-file and return to the same
session another time.

Select the Save session button to save your session as a MAT-file.
The first time you save a session, a Save Filter Design File browser opens,
prompting you for a session name.

For example, save this design session as TestFilter.fda in your current
working directory by typing TestFilter in the File name field.

The .fda extension is added automatically to all filter design sessions you
save.

Note You can also use the File > Save session and File > Save session
as to save a session.

You can load existing sessions into the Filter Design and Analysis Tool

by selecting the Open session button, or File > Open session . A
Load Filter Design File browser opens that allows you to select from your
previously saved filter design sessions.

5-49

5 FDATool: A Filter Design and Analysis GUI

5-50

6

Statistical Signal
Processing

The following chapter discusses statistical signal processing tools and
applications, including correlations, covariance, and spectral estimation.

• “Correlation and Covariance” on page 6-2

• “Spectral Analysis” on page 6-5

• “Selected Bibliography” on page 6-48

6 Statistical Signal Processing

Correlation and Covariance

In this section...

“Background Information” on page 6-2

“Using xcorr and xcov Functions” on page 6-3

“Bias and Normalization” on page 6-3

“Multiple Channels” on page 6-4

Background Information
The cross-correlation sequence for two wide-sense stationary random process,
x(n) and y(n) is:

R m E x n m y nxy () { () ()}*= +

where * denotes the complex conjugate and the expectation is over the
ensemble of realizations that constitute the random processes.

Note that cross-correlation is not commutative, but a Hermitian (conjugate)
symmetry property holds such that:

R m R mxy yx() ()*= −

The cross-covariance between x(n) and y(n) is:

C m E x n m y n R mxy x y xy x y() {(()) (()) } ()* *= + − − = −

For zero-mean wide-sense stationary random processes, the cross-correlation
and cross-covariance are equivalent.

In practice, you must estimate these sequences, because it is possible to
access only a finite segment of the infinite-length random processes. Further,
it is often necessary to estimate ensemble moments based on time averages
because only a single realization of the random processes are available.
A common estimate based on N samples of xn and yn is the deterministic
cross-correlation sequence (also called the time-ambiguity function)

6-2

Correlation and Covariance

ˆ ()
() ()

ˆ ()

*

*

R m
x n m y n m

R m m
xy n

N m

xy

=
+ ≥

− <

⎧

⎨
⎪⎪

⎩
⎪
⎪

=

− −

∑
0

1
0

0

where we assume for this discussion that xn and yn are indexed from 0 to

N-1, and ˆ ()R mxy from -(N-1) to N-1.

Using xcorr and xcov Functions
The functions xcorr and xcov estimate the cross-correlation and
cross-covariance sequences of random processes. They also handle
autocorrelation and autocovariance as special cases. The xcorr function
evaluates the sum shown above with an efficient FFT-based algorithm, given
inputs xn and yn stored in length N vectors x and y. Its operation is equivalent
to convolution with one of the two subsequences reversed in time.

For example:

x = [1 1 1 1 1]';
y = x;
xyc = xcorr(x,y)

Notice that the resulting sequence length is one less than twice the length
of the input sequence. Thus, the Nth element is the correlation at lag 0.
Also notice the triangular pulse of the output that results when convolving
two square pulses.

The xcov function estimates autocovariance and cross-covariance sequences.
This function has the same options and evaluates the same sum as xcorr, but
first removes the means of x and y.

Bias and Normalization
An estimate of a quantity is biased if its expected value is not equal to the
quantity it estimates. The expected value of the output of xcorr is

E R m N m R mxy xy{ ()} (| |) ()= −

6-3

6 Statistical Signal Processing

xcorr provides the unbiased estimate, dividing by N-|m|, when you specify
an 'unbiased' flag after the input sequences.

xcorr(x,y,'unbiased')

Although this estimate is unbiased, the end points (near -(N-1) and N-1) suffer
from large variance because xcorr computes them using only a few data
points. A possible trade-off is to simply divide by N using the 'biased' flag:

xcorr(x,y,'biased')

With this scheme, only the sample of the correlation at zero lag (the Nth
output element) is unbiased. This estimate is often more desirable than the
unbiased one because it avoids random large variations at the end points
of the correlation sequence.

xcorr provides one other normalization scheme. The syntax

xcorr(x,y,'coeff')

divides the output by norm(x)*norm(y) so that, for autocorrelations, the
sample at zero lag is 1.

Multiple Channels
For a multichannel signal, xcorr and xcov estimate the autocorrelation and
cross-correlation and covariance sequences for all of the channels at once. If S
is an M-by-N signal matrix representing N channels in its columns, xcorr(S)
returns a (2M-1)-by-N2 matrix with the autocorrelations and cross-correlations
of the channels of S in its N2 columns. If S is a three-channel signal

S = [s1 s2 s3]

then the result of xcorr(S) is organized as

R = [Rs1s1 Rs1s2 Rs1s3 Rs2s1 Rs2s2 Rs2s3 Rs3s1 Rs3s2 Rs3s3]

Two related functions, cov and corrcoef, are available in the standard
MATLAB environment. They estimate covariance and normalized covariance
respectively between the different channels at lag 0 and arrange them in
a square matrix.

6-4

Spectral Analysis

Spectral Analysis

In this section...

“Background Information” on page 6-5

“Spectral Estimation Method” on page 6-7

“Nonparametric Methods” on page 6-9

“Parametric Methods” on page 6-32

“Using FFT to Obtain Simple Spectral Analysis Plots” on page 6-45

Background Information
The goal of spectral estimation is to describe the distribution (over frequency)
of the power contained in a signal, based on a finite set of data. Estimation of
power spectra is useful in a variety of applications, including the detection
of signals buried in wideband noise.

The power spectral density (PSD) of a stationary random process xn is
mathematically related to the autocorrelation sequence by the discrete-time
Fourier transform. In terms of normalized frequency, this is given by

P R m exx xx
j m

m

() ()ω
π

ω= −

=−∞

∞

∑1
2

This can be written as a function of physical frequency f (e.g., in hertz) by
using the relation ω = 2πf/fs, where fs is the sampling frequency.

P f
f

R m exx
s

xx
j mf f

m

s() () /= −

=−∞

∞

∑1 2π

The correlation sequence can be derived from the PSD by use of the inverse
discrete-time Fourier transform:

6-5

6 Statistical Signal Processing

R m P e d P f e dfxx xx
j m

xx
j mf f

f

f
s

s

s

() () () /

/

/

= =
− −
∫ ∫ω ωω

π

π
π2

2

2

The average power of the sequence xn over the entire Nyquist interval is
represented by

R P d P f dfxx xx xx
f

f

s

s

() () ()
/

/

0
2

2

= =
−−
∫∫ ω ω

π

π

The average power of a signal over a particular frequency band [ω1, ω2],
0≤ω1≤ω2≤π, can be found by integrating the PSD over that band:

P P d P dxx xx[,] () ()

1 2
1

2

2

1= =∫ ∫−

−

You can see from the above expression that Pxx(ω) represents the power
content of a signal in an infinitesimal frequency band, which is why it is called
the power spectral density.

The units of the PSD are power (e.g., watts) per unit of frequency. In the case
of Pxx(ω), this is watts/radian/sample or simply watts/radian. In the case
of Pxx(f), the units are watts/hertz. Integration of the PSD with respect to
frequency yields units of watts, as expected for the average power .

For real–valued signals, the PSD is symmetric about DC, and thus Pxx(ω) for
0≤ω≤π is sufficient to completely characterize the PSD. However, to obtain the
average power over the entire Nyquist interval, it is necessary to introduce
the concept of the one-sided PSD.

The one-sided PSD is given by

P
Pxx

onesided ()
()

=

− ≤ <
≤ ≤

⎧
⎨
⎩

0 0
2 0

The average power of a signal over the frequency band, [ω1, ω2] with
0≤ω1≤ω2≤π, can be computed using the one-sided PSD as

6-6

Spectral Analysis

P P d[,] ()

1 2
1

2= ∫ onesided

Spectral Estimation Method
The various methods of spectrum estimation available in the toolbox are
categorized as follows:

• Nonparametric methods

• Parametric methods

• Subspace methods

Nonparametric methods are those in which the PSD is estimated directly
from the signal itself. The simplest such method is the periodogram. Other
nonparametric techniques such as Welch’s method [8], the multitaper method
(MTM) reduce the variance of the periodogram.

Parametric methods are those in which the PSD is estimated from a signal
that is assumed to be output of a linear system driven by white noise.
Examples are the Yule-Walker autoregressive (AR) method and the Burg
method. These methods estimate the PSD by first estimating the parameters
(coefficients) of the linear system that hypothetically generates the signal.
They tend to produce better results than classical nonparametric methods
when the data length of the available signal is relatively short. Parametric
methods also produce smoother estimates of the PSD than nonparametric
methods, but are subject to error from model misspecification.

Subspace methods, also known as high-resolution methods or super-resolution
methods, generate frequency component estimates for a signal based on an
eigenanalysis or eigendecomposition of the autocorrelation matrix. Examples
are the multiple signal classification (MUSIC) method or the eigenvector (EV)
method. These methods are best suited for line spectra — that is, spectra of
sinusoidal signals — and are effective in the detection of sinusoids buried
in noise, especially when the signal to noise ratios are low. The subspace
methods do not yield true PSD estimates: they do not preserve process power
between the time and frequency domains, and the autocorrelation sequence
cannot be recovered by taking the inverse Fourier transform of the frequency
estimate.

6-7

6 Statistical Signal Processing

All three categories of methods are listed in the table below with the
corresponding toolbox function and spectrum object names. More information
about each function is on the corresponding function reference page.
See “Parametric Modeling” on page 7-13 for details about lpc and other
parametric estimation functions.

Spectral Estimation Methods/Functions

Method Description Functions

Periodogram Power spectral density
estimate

spectrum.periodogram,
periodogram

Welch Averaged periodograms
of overlapped, windowed
signal sections

spectrum.welch, pwelch,
cpsd, tfestimate,
mscohere

Multitaper Spectral estimate from
combination of multiple
orthogonal windows (or
“tapers”)

spectrum.mtm, pmtm

Yule-Walker AR Autoregressive (AR)
spectral estimate of
a time-series from its
estimated autocorrelation
function

spectrum.yulear,
pyulear

Burg Autoregressive (AR)
spectral estimation
of a time-series by
minimization of linear
prediction errors

spectrum.burg, pburg

Covariance Autoregressive (AR)
spectral estimation
of a time-series by
minimization of the
forward prediction errors

spectrum.cov, pcov

6-8

Spectral Analysis

Spectral Estimation Methods/Functions (Continued)

Method Description Functions

Modified
Covariance

Autoregressive (AR)
spectral estimation
of a time-series by
minimization of the
forward and backward
prediction errors

spectrum.mcov, pmcov

MUSIC Multiple signal
classification

spectrum.music, pmusic

Eigenvector Pseudospectrum estimate spectrum.eigenvector,
peig

Nonparametric Methods
The following sections discuss the periodogram, modified periodogram, Welch,
and multitaper methods of nonparametric estimation, along with the related
CPSD function, transfer function estimate, and coherence function.

Periodogram
In general terms, one way of estimating the PSD of a process is to simply find
the discrete-time Fourier transform of the samples of the process (usually
done on a grid with an FFT) and appropriately scale the magnitude squared
of the result. This estimate is called the periodogram.

The periodogram estimate of the PSD of a length-L signal xL[n] is

P
LF

f x n exx
s

L
n

L
j fn Fs() | () |/=

=

−
−∑1

0

1
2 2

where Fs is the sampling frequency.

In practice, the actual computation of Pxx(f) can be performed only at a
finite number of frequency points, and usually employs an FFT. Most

6-9

6 Statistical Signal Processing

implementations of the periodogram method compute the N-point PSD
estimate at the frequencies

f
kF
N

k Nk
s= = … −0 1 1, , ,

In some cases, the computation of the periodogram via an FFT algorithm is
more efficient if the number of frequencies is a power of two. Therefore it
is not uncommon to pad the input signal with zeros to extend its length to
a power of two.

As an example of the periodogram, consider the following 1001-element
signal xn, which consists of two sinusoids plus noise:

fs = 1000; % Sampling frequency
t = (0:fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes (row vector)
f = [150;140]; % Sinusoid frequencies (column vector)
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));

Note The three last lines illustrate a convenient and general way to express
the sum of sinusoids.

Together they are equivalent to xn = sin(2*pi*150*t) +
2*sin(2*pi*140*t) + 0.1*randn(size(t));

The periodogram estimate of the PSD can be computed by creating a
periodogram object. In this case, the data vector is multiplied by a Hamming
window.

Hs = spectrum.periodogram('Hamming');

6-10

Spectral Analysis

and a plot of the PSD estimate can be displayed with the psd method:

psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','onesided')

The average power can be computed by approximating the integral with the
following sum:

Hdsp2= psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','twosided');
Pow = avgpower(Hdsp2)

You can also compute the average power from the one-sided PSD estimate:

Hdsp3= psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','onesided');
Pow = avgpower(Hdsp3)

Algorithm. Spectrum.periodogram computes and scales the output of the
FFT to produce the power vs. frequency plot as follows. For a detailed
example, see Tech Note 1702 on the MathWorks Web site.

1 For rapid and efficient processing, make the input signal length (nfft)
equal to a power of 2 by padding it with zeros.

6-11

http://www.mathworks.com/support/tech-notes/1700/1702.html

6 Statistical Signal Processing

2 If the input signal is real-valued, the magnitude of the resulting FFT is
symmetric with respect to zero frequency (DC). For an even-length FFT,
only the first (1+nfft/2) points are unique. Determine the number of
unique values and keep only those unique points.

3 Take the squared magnitudes of the unique FFT values. Scale the squared
magnitudes (except for DC) by 2Fs/N, where N is the length of signal prior
to any zero padding. Scale the DC value by Fs/N.

4 Create a frequency vector from the number of unique points, the nfft and
the sampling frequency.

5 Plot the resulting magnitude squared FFT vs. the frequency.

Performance of the Periodogram
The following sections discuss the performance of the periodogram with
regard to the issues of leakage, resolution, bias, and variance.

Spectral Leakage. Consider the PSD of a finite-length (length L) signal
xL[n], as discussed in the “Periodogram” on page 6-9 section. It is frequently
useful to interpret xL[n] as the result of multiplying an infinite signal, x[n], by
a finite-length rectangular window, wR[n]:

x n x n w nL R[] [] [].=

Because multiplication in the time domain corresponds to convolution in the
frequency domain, the expected value of the periodogram in the frequency
domain is:

E P f
Fs

L f f Fs

L f f Fs
xx Fs

Fs
{ ()}

sin (() /)

sin (() /)/

/
= − ′

− ′−∫
1 2

22

2

PP f dfxx () ,′ ′

showing that the expected value of the periodogram is the convolution of the
true PSD with the square of the Dirichlet kernel.

The effect of the convolution is best understood for sinusoidal data. Suppose
that x[n] is composed of a sum of M complex sinusoids:

6-12

Spectral Analysis

x n A ek
k

N
j nk() =

=
∑

1

Its spectrum is

X Ak
k

N

k() () = −
=
∑

1

which for a finite-length sequence becomes

X A W dk
k

N

k R() (()) ()

= − −

−
=

∫ ∑
1

= = \ = \

The preceding equation is equal to:

X A Wk
k

N

R k() () = −
=
∑

1

So in the spectrum of the finite-length signal, the Dirac deltas have been
replaced by terms of the form WR(ω-ωk), which corresponds to the frequency
response of a rectangular window centered on the frequency ωk.

6-13

6 Statistical Signal Processing

The frequency response of a rectangular window has the shape of a sinc
signal, as shown below.

The plot displays a main lobe and several side lobes, the largest of which is
approximately 13.5 dB below the mainlobe peak. These lobes account for
the effect known as spectral leakage. While the infinite-length signal has its
power concentrated exactly at the discrete frequency points fk, the windowed
(or truncated) signal has a continuum of power “leaked” around the discrete
frequency points fk.

Because the frequency response of a short rectangular window is a much
poorer approximation to the Dirac delta function than that of a longer
window, spectral leakage is especially evident when data records are short.
Consider the following sequence of 100 samples:

fs = 1000; % Sampling frequency
t = (0:fs/10)/fs; % One-tenth second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hs = spectrum.periodogram;
psd(Hs,xn,'Fs',fs,'NFFT',1024)

6-14

Spectral Analysis

It is important to note that the effect of spectral leakage is contingent solely
on the length of the data record. It is not a consequence of the fact that the
periodogram is computed at a finite number of frequency samples.

Resolution. Resolution refers to the ability to discriminate spectral features,
and is a key concept on the analysis of spectral estimator performance.

In order to resolve two sinusoids that are relatively close together in
frequency, it is necessary for the difference between the two frequencies to
be greater than the width of the mainlobe of the leaked spectra for either
one of these sinusoids. The mainlobe width is defined to be the width of the
mainlobe at the point where the power is half the peak mainlobe power (i.e.,
3 dB width). This width is approximately equal to fs / L.

In other words, for two sinusoids of frequencies f1 and f2, the resolvability
condition requires that

()f f
Fs
L2 1− >

6-15

6 Statistical Signal Processing

In the example above, where two sinusoids are separated by only 10 Hz, the
data record must be greater than 100 samples to allow resolution of two
distinct sinusoids by a periodogram.

Consider a case where this criterion is not met, as for the sequence of 67
samples below:

fs = 1000; % Sampling frequency
t = (0:fs/15)./fs; % 67 samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hs=spectrum.periodogram;
psd(Hs,xn,'Fs',fs,'NFFT',1024)

The above discussion about resolution did not consider the effects of noise
since the signal-to-noise ratio (SNR) has been relatively high thus far. When
the SNR is low, true spectral features are much harder to distinguish, and

6-16

Spectral Analysis

noise artifacts appear in spectral estimates based on the periodogram. The
example below illustrates this:

fs = 1000; % Sampling frequency
t = (0:fs/10)./fs; % One-tenth second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 2*randn(size(t));
Hs=spectrum.periodogram;
psd(Hs,xn,'Fs',fs,'NFFT',1024)

Bias of the Periodogram. The periodogram is a biased estimator of the
PSD. Its expected value was previously shown to be:

E P f
Fs

L f f Fs

L f f Fs
xx Fs

Fs
{ ()}

sin (() /)

sin (() /)/

/
= − ′

− ′−∫
1 2

22

2

PP f dfxx () ,′ ′

6-17

6 Statistical Signal Processing

The periodogram is asymptotically unbiased, which is evident from the earlier
observation that as the data record length tends to infinity, the frequency
response of the rectangular window more closely approximates the Dirac
delta function. However, in some cases the periodogram is a poor estimator
of the PSD even when the data record is long. This is due to the variance of
the periodogram, as explained below.

Variance of the Periodogram. The variance of the periodogram can be
shown to be:

Var
Fs

or
(())

() /

() /
P f

P f f

P f f f Fs
xx

xx

xx

=
< <

= =

⎧
⎨
⎪

⎩⎪

2

2

0 2

2 0 2

which indicates that the variance does not tend to zero as the data length L
tends to infinity. In statistical terms, the periodogram is not a consistent
estimator of the PSD. Nevertheless, the periodogram can be a useful tool for
spectral estimation in situations where the SNR is high, and especially if
the data record is long.

The Modified Periodogram
Themodified periodogram windows the time-domain signal prior to computing
the DFT in order to smooth the edges of the signal. This has the effect of
reducing the height of the sidelobes or spectral leakage. This phenomenon
gives rise to the interpretation of sidelobes as spurious frequencies introduced
into the signal by the abrupt truncation that occurs when a rectangular
window is used. For nonrectangular windows, the end points of the truncated
signal are attenuated smoothly, and hence the spurious frequencies
introduced are much less severe. On the other hand, nonrectangular windows
also broaden the mainlobe, which results in a reduction of resolution.

spectrum.periodogram allows you to compute a modified periodogram by
specifying the window to be used on the data. For example, compare a default
rectangular window and a Hamming window:

fs = 1000; % Sampling frequency
t = (0:fs/10)./fs; % One-tenth second worth of samples
A = [1 2]; % Sinusoid amplitudes

6-18

Spectral Analysis

f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hrect = spectrum.periodogram;
psd(Hrect,xn,'Fs',fs,'NFFT',1024);

6-19

6 Statistical Signal Processing

Hhamm = spectrum.periodogram('Hamming');
psd(Hhamm,xn,'Fs',fs,'NFFT',1024);

You can verify that although the sidelobes are much less evident in the
Hamming-windowed periodogram, the two main peaks are wider. In fact,
the 3 dB width of the mainlobe corresponding to a Hamming window
is approximately twice that of a rectangular window. Hence, for a fixed
data length, the PSD resolution attainable with a Hamming window is
approximately half that attainable with a rectangular window. The competing
interests of mainlobe width and sidelobe height can be resolved to some extent
by using variable windows such as the Kaiser window.

Nonrectangular windowing affects the average power of a signal because
some of the time samples are attenuated when multiplied by the window.
To compensate for this, spectrum.periodogram and spectrum.welch
normalize the window to have an average power of unity. This ensures that
the measured average power is generally independent of window choice. If
the frequency components are not well resolved by the PSD estimators, the
window choice does affect the average power.

6-20

Spectral Analysis

The modified periodogram estimate of the PSD is

ˆ ()
| ()|

P f
X f
FsLUxx =

2

where U is the window normalization constant.

U
L

w n
n

N
=

=

−

∑1

0

1
2| ()| .

For large values of L, U tends to become independent of window length.
The addition of U as a normalization constant ensures that the modified
periodogram is asymptotically unbiased.

Welch’s Method
An improved estimator of the PSD is the one proposed by Welch [8]. The
method consists of dividing the time series data into (possibly overlapping)
segments, computing a modified periodogram of each segment, and then
averaging the PSD estimates. The result is Welch’s PSD estimate. Welch’s
method is implemented in the toolbox by the spectrum.welch object or
pwelch function

The averaging of modified periodograms tends to decrease the variance of the
estimate relative to a single periodogram estimate of the entire data record.
Although overlap between segments introduces redundant information, this
effect is diminished by the use of a nonrectangular window, which reduces
the importance or weight given to the end samples of segments (the samples
that overlap).

However, as mentioned above, the combined use of short data records and
nonrectangular windows results in reduced resolution of the estimator. In
summary, there is a trade-off between variance reduction and resolution.
One can manipulate the parameters in Welch’s method to obtain improved
estimates relative to the periodogram, especially when the SNR is low. This is
illustrated in the following example.

Consider an original signal consisting of 301 samples:

6-21

6 Statistical Signal Processing

fs = 1000; % Sampling frequency
t = (0:0.3*fs)./fs; % 301 samples
A = [2 8]; % Sinusoid amplitudes (row vector)
f = [150;140]; % Sinusoid frequencies (column vector)
xn = A*sin(2*pi*f*t) + 5*randn(size(t));
Hs = spectrum.periodogram('rectangular');
psd(Hs,xn,'Fs',fs,'NFFT',1024);

We can obtain Welch’s spectral estimate for 3 segments with 50% overlap with

Hs = spectrum.welch('rectangular',150,50);
psd(Hs,xn,'Fs',fs,'NFFT',512);

6-22

Spectral Analysis

In the periodogram above, noise and the leakage make one of the sinusoids
essentially indistinguishable from the artificial peaks. In contrast, although
the PSD produced by Welch’s method has wider peaks, you can still
distinguish the two sinusoids, which stand out from the “noise floor.”

However, if we try to reduce the variance further, the loss of resolution causes
one of the sinusoids to be lost altogether:

6-23

6 Statistical Signal Processing

Hs = spectrum.welch('rectangular',100,75);
psd(Hs,xn,'Fs',fs,'NFFT',512);

For a more detailed discussion of Welch’s method of PSD estimation, see
Kay [2] and Welch [8].

Bias and Normalization in Welch’s Method
Welch’s method yields a biased estimator of the PSD. The expected value of
the PSD estimate is:

E P f
FsLU

W f f P f df
Fs

F
xx{ ()} | ()| ()

/

/
Welch = − ′ ′ ′

−∫
1

2

2 2

where L is the length of the data segments, U is the same normalization
constant present in the definition of the modified periodogram, and W(f) is the
Fourier transform of the window function. As is the case for all periodograms,
Welch’s estimator is asymptotically unbiased. For a fixed length data record,

6-24

Spectral Analysis

the bias of Welch’s estimate is larger than that of the periodogram because
the length of the segments is less than the length of the entire data sample.

The variance of Welch’s estimator is difficult to compute because it depends
on both the window used and the amount of overlap between segments.
Basically, the variance is inversely proportional to the number of segments
whose modified periodograms are being averaged.

Multitaper Method
The periodogram can be interpreted as filtering a length L signal, xL[n],
through a filter bank (a set of filters in parallel) of L FIR bandpass filters.
The 3 dB bandwidth of each of these bandpass filters can be shown to be
approximately equal to fs / L. The magnitude response of each one of these
bandpass filters resembles that of the rectangular window discussed in
“Spectral Leakage” on page 6-12. The periodogram can thus be viewed as
a computation of the power of each filtered signal (i.e., the output of each
bandpass filter) that uses just one sample of each filtered signal and assumes
that the PSD of xL[n] is constant over the bandwidth of each bandpass filter.

As the length of the signal increases, the bandwidth of each bandpass filter
decreases, making it a more selective filter, and improving the approximation
of constant PSD over the bandwidth of the filter. This provides another
interpretation of why the PSD estimate of the periodogram improves as the
length of the signal increases. However, there are two factors apparent from
this standpoint that compromise the accuracy of the periodogram estimate.
First, the rectangular window yields a poor bandpass filter. Second, the
computation of the power at the output of each bandpass filter relies on a
single sample of the output signal, producing a very crude approximation.

Welch’s method can be given a similar interpretation in terms of a filter bank.
In Welch’s implementation, several samples are used to compute the output
power, resulting in reduced variance of the estimate. On the other hand,
the bandwidth of each bandpass filter is larger than that corresponding to
the periodogram method, which results in a loss of resolution. The filter
bank model thus provides a new interpretation of the compromise between
variance and resolution.

Thompson’s multitaper method (MTM) builds on these results to provide an
improved PSD estimate. Instead of using bandpass filters that are essentially

6-25

6 Statistical Signal Processing

rectangular windows (as in the periodogram method), the MTM method uses
a bank of optimal bandpass filters to compute the estimate. These optimal
FIR filters are derived from a set of sequences known as discrete prolate
spheroidal sequences (DPSSs, also known as Slepian sequences).

In addition, the MTM method provides a time-bandwidth parameter with
which to balance the variance and resolution. This parameter is given by the
time-bandwidth product, NW and it is directly related to the number of tapers
used to compute the spectrum. There are always 2*NW-1 tapers used to form
the estimate. This means that, as NW increases, there are more estimates of
the power spectrum, and the variance of the estimate decreases. However, the
bandwidth of each taper is also proportional to NW, so as NW increases, each
estimate exhibits more spectral leakage (i.e., wider peaks) and the overall
spectral estimate is more biased. For each data set, there is usually a value
for NW that allows an optimal trade-off between bias and variance.

The Signal Processing Toolbox function that implements the MTM method is
pmtm and the object that implements it is spectrum.mtm. Use spectrum.mtm
to compute the PSD of xn from the previous examples:

fs = 1000; % Sampling frequency
t = (0:fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hs1 = spectrum.mtm(4,'adapt');
psd(Hs1,xn,'Fs',fs,'NFFT',1024)

6-26

Spectral Analysis

By lowering the time-bandwidth product, you can increase the resolution at
the expense of larger variance:

6-27

6 Statistical Signal Processing

Hs2 = spectrum.mtm(3/2,'adapt');
psd(Hs2,xn,'Fs',fs,'NFFT',1024)

Note that the average power is conserved in both cases:

Hs1p = psd(Hs1,xn,'Fs',fs,'NFFT',1024);
Pow1 = avgpower(Hs1p)
Hs2p = psd(Hs2,xn,'Fs',fs,'NFFT',1024);
Pow2 = avgpower(Hs2p)

This method is more computationally expensive than Welch’s method due to
the cost of computing the discrete prolate spheroidal sequences. For long data
series (10,000 points or more), it is useful to compute the DPSSs once and
save them in a MAT-file. dpsssave, dpssload, dpssdir, and dpssclear are
provided to keep a database of saved DPSSs in the MAT-file dpss.mat.

6-28

Spectral Analysis

Cross-Spectral Density Function
The PSD is a special case of the cross spectral density (CPSD) function,
defined between two signals xn and yn as

P R m exy xy
j m

m

() ()ω
π

ω= −

=−∞

∞

∑1
2

As is the case for the correlation and covariance sequences, the toolbox
estimates the PSD and CPSD because signal lengths are finite.

To estimate the cross-spectral density of two equal length signals x and y
using Welch’s method, the cpsd function forms the periodogram as the product
of the FFT of x and the conjugate of the FFT of y. Unlike the real-valued PSD,
the CPSD is a complex function. cpsd handles the sectioning and windowing
of x and y in the same way as the pwelch function:

Sxy = cpsd(x,y,nwin,noverlap,nfft,fs)

Transfer Function Estimate
One application of Welch’s method is nonparametric system identification.
Assume that H is a linear, time invariant system, and x(n) and y(n) are the
input to and output of H, respectively. Then the power spectrum of x(n) is
related to the CPSD of x(n) and y(n) by

P H Pyx xx() () ()ω ω ω=

An estimate of the transfer function between x(n) and y(n) is

H
P

P
yx

xx
()

()

()
ω

ω

ω
=

This method estimates both magnitude and phase information. The
tfestimate function uses Welch’s method to compute the CPSD and power
spectrum, and then forms their quotient for the transfer function estimate.
Use tfestimate the same way that you use the cpsd function.

6-29

6 Statistical Signal Processing

Filter the signal xn with an FIR filter, then plot the actual magnitude
response and the estimated response:

h = ones(1,10)/10; % Moving-average filter
yn = filter(h,1,xn);
[HEST,f] = tfestimate(xn,yn,256,128,256,fs);
H = freqz(h,1,f,fs);
subplot(2,1,1); plot(f,abs(H));
title('Actual Transfer Function Magnitude');
subplot(2,1,2); plot(f,abs(HEST));
title('Transfer Function Magnitude Estimate');
xlabel('Frequency (Hz)');

Coherence Function
The magnitude-squared coherence between two signals x(n) and y(n) is

C
P

P Pxy
xy

xx yy
()

()

() ()
ω

ω

ω ω
=

2

This quotient is a real number between 0 and 1 that measures the correlation
between x(n) and y(n) at the frequency ω.

6-30

Spectral Analysis

The mscohere function takes sequences x and y, computes their power spectra
and CPSD, and returns the quotient of the magnitude squared of the CPSD
and the product of the power spectra. Its options and operation are similar to
the cpsd and tfestimate functions.

The coherence function of xn and the filter output yn versus frequency is

mscohere(xn,yn,256,128,256,fs)

If the input sequence length nfft, window length window, and the number of
overlapping data points in a window numoverlap, are such that mscohere
operates on only a single record, the function returns all ones. This is because
the coherence function for linearly dependent data is one.

6-31

6 Statistical Signal Processing

Parametric Methods
Parametric methods can yield higher resolutions than nonparametric methods
in cases when the signal length is short. These methods use a different
approach to spectral estimation; instead of trying to estimate the PSD directly
from the data, they model the data as the output of a linear system driven
by white noise, and then attempt to estimate the parameters of that linear
system.

The most commonly used linear system model is the all-pole model, a filter
with all of its zeroes at the origin in the z-plane. The output of such a filter for
white noise input is an autoregressive (AR) process. For this reason, these
methods are sometimes referred to as AR methods of spectral estimation.

The AR methods tend to adequately describe spectra of data that is “peaky,”
that is, data whose PSD is large at certain frequencies. The data in many
practical applications (such as speech) tends to have “peaky spectra” so that
AR models are often useful. In addition, the AR models lead to a system of
linear equations which is relatively simple to solve.

Signal Processing Toolbox AR methods for spectral estimation include:

• Yule-Walker AR method (autocorrelation method)

• Burg method

• Covariance method

• Modified covariance method

All AR methods yield a PSD estimate given by

ˆ ()

| ˆ () |/

P f
Fs

a k e

p

p
k

p
j kf Fs

=

−
=

−∑
1

1
1

2 2

The different AR methods estimate the parameters slightly differently,
yielding different PSD estimates. The following table provides a summary
of the different AR methods.

6-32

Spectral Analysis

AR Methods

Burg Covariance
Modified
Covariance Yule-Walker

Does not apply
window to data

Does not apply
window to data

Does not apply
window to data

Applies window
to data

Characteristics

Minimizes
the forward
and backward
prediction errors
in the least
squares sense,
with the AR
coefficients
constrained to
satisfy the L-D
recursion

Minimizes
the forward
prediction error
in the least
squares sense

Minimizes
the forward
and backward
prediction errors
in the least
squares sense

Minimizes
the forward
prediction error
in the least
squares sense

(also called
“Autocorrelation
method”)

High resolution
for short data
records

Better resolution
than Y-W
for short
data records
(more accurate
estimates)

High resolution
for short data
records

Performs as well
as other methods
for large data
records

Able to extract
frequencies from
data consisting
of p or more pure
sinusoids

Advantages

Always produces
a stable model

Able to extract
frequencies from
data consisting
of p or more pure
sinusoids

Does not
suffer spectral
line-splitting

Always produces
a stable model

6-33

6 Statistical Signal Processing

AR Methods (Continued)

Burg Covariance
Modified
Covariance Yule-Walker

Peak locations
highly dependent
on initial phase

May produce
unstable models

May produce
unstable models

Performs
relatively poorly
for short data
records

May suffer
spectral
line-splitting
for sinusoids in
noise, or when
order is very
large

Peak locations
slightly
dependent on
initial phase

Frequency bias
for estimates of
sinusoids in noise

Disadvantages

Frequency bias
for estimates of
sinusoids in noise

Frequency bias
for estimates of
sinusoids in noise

Minor frequency
bias for estimates
of sinusoids in
noise

Conditions for
Nonsingularity

Order must be
less than or equal
to half the input
frame size

Order must be
less than or equal
to 2/3 the input
frame size

Because of
the biased
estimate, the
autocorrelation
matrix is
guaranteed to
positive-definite,
hence
nonsingular

Yule-Walker AR Method
The Yule-Walker AR method of spectral estimation computes the AR
parameters by solving the following linear system, which give the Yule-Walker
equations in matrix form:

6-34

Spectral Analysis

r r r p

r r r p
r p r p r

() () ()

() () ()
() () ()

* *

*

0 1 1

1 0 2
1 2 0

… −

… −
− − …

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟⎟
⎟
⎟
⎟

…

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
…

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

a
a

a p

r
r

r p

()
()

()

()
()

()

1
2

1
2

In practice, the biased estimate of the autocorrelation is used for the unknown
true autocorrelation.The Yule-Walker AR method produces the same results
as a maximum entropy estimator. For more information, see page 155 of item
[2] in the “Selected Bibliography” on page 6-48.

The use of a biased estimate of the autocorrelation function ensures that
the autocorrelation matrix above is positive definite. Hence, the matrix is
invertible and a solution is guaranteed to exist. Moreover, the AR parameters
thus computed always result in a stable all-pole model. The Yule-Walker
equations can be solved efficiently via Levinson’s algorithm, which takes
advantage of the Hermitian Toeplitz structure of the autocorrelation matrix.

The toolbox object spectrum.yulear and function pyulear implement the
Yule-Walker AR method.

For example, compare the spectrum of a speech signal using Welch’s method
and the Yule-Walker AR method:

load mtlb
Hwelch = spectrum.welch('hamming',256,50);
psd(Hwelch,mtlb,'Fs',Fs,'NFFT',1024)

6-35

6 Statistical Signal Processing

6-36

Spectral Analysis

Hyulear = spectrum.yulear(14);
psd(Hyulear,mtlb,'Fs',Fs,'NFFT',1024)

The Yule-Walker AR spectrum is smoother than the periodogram because of
the simple underlying all-pole model.

Burg Method
The Burg method for AR spectral estimation is based on minimizing the
forward and backward prediction errors while satisfying the Levinson-Durbin
recursion (see Marple [3], Chapter 7, and Proakis [6], Section 12.3.3). In
contrast to other AR estimation methods, the Burg method avoids calculating
the autocorrelation function, and instead estimates the reflection coefficients
directly.

The primary advantages of the Burg method are resolving closely spaced
sinusoids in signals with low noise levels, and estimating short data records,
in which case the AR power spectral density estimates are very close to the

6-37

6 Statistical Signal Processing

true values. In addition, the Burg method ensures a stable AR model and
is computationally efficient.

The accuracy of the Burg method is lower for high-order models, long data
records, and high signal-to-noise ratios (which can cause line splitting,
or the generation of extraneous peaks in the spectrum estimate). The
spectral density estimate computed by the Burg method is also susceptible
to frequency shifts (relative to the true frequency) resulting from the initial
phase of noisy sinusoidal signals. This effect is magnified when analyzing
short data sequences.

The toolbox object spectrum.burg and function pburg implement the Burg
method. Compare the spectrum of the speech signal generated by both the
Burg method and the Yule-Walker AR method. They are very similar for
large signal lengths:

load mtlb
Hburg = spectrum.burg(14); % 14th order model
psd(Hburg,mtlb(1:512),'Fs',Fs,'NFFT',1024)

6-38

Spectral Analysis

Hyulear = spectrum.yulear(14); % 14th order model
psd(Hyulear,mtlb(1:512),'Fs',Fs,'NFFT',1024)

Compare the spectrum of a noisy signal computed using the Burg method
and the Welch method:

fs = 1000; % Sampling frequency
t = (0:fs)/fs; % One second worth of samples
A = [1 2]; % Sinusoid amplitudes
f = [150;140]; % Sinusoid frequencies
xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));
Hwelch = spectrum.welch('hamming',256,50);
psd(Hwelch,xn,'Fs',fs,'NFFT',1024)

6-39

6 Statistical Signal Processing

6-40

Spectral Analysis

Hburg = spectrum.burg(14);
psd(Hburg,xn,'Fs',fs,'NFFT',1024)

Note that, as the model order for the Burg method is reduced, a frequency
shift due to the initial phase of the sinusoids will become apparent.

Covariance and Modified Covariance Methods
The covariance method for AR spectral estimation is based on minimizing
the forward prediction error. The modified covariance method is based on
minimizing the forward and backward prediction errors. The toolbox object
spectrum.cov and function pcov, and object spectrum.mcov and function
pmcov implement the respective methods.

Compare the spectrum of the speech signal generated by both the covariance
method and the modified covariance method. They are nearly identical, even
for a short signal length:

6-41

6 Statistical Signal Processing

load mtlb
Hcov = spectrum.cov(14); % 14th order model
psd(Hcov,mtlb(1:64),'Fs',Fs,'NFFT',1024)

Hmcov = spectrum.mcov(14); % 14th order model
psd(Hmcov,mtlb(1:64),'Fs',Fs,'NFFT',1024)

6-42

Spectral Analysis

MUSIC and Eigenvector Analysis Methods
The spectrum.music object and pmusic function, and spectrum.eigenvector
object and peig function provide two related spectral analysis methods:

• spectrum.music and pmusic provide the multiple signal classification
(MUSIC) method developed by Schmidt

• spectrum.eigenvector and peig provides the eigenvector (EV) method
developed by Johnson

See Marple [3] (pgs. 373-378) for a summary of these methods.

Both of these methods are frequency estimator techniques based on
eigenanalysis of the autocorrelation matrix. This type of spectral analysis
categorizes the information in a correlation or data matrix, assigning
information to either a signal subspace or a noise subspace.

6-43

6 Statistical Signal Processing

Eigenanalysis Overview
Consider a number of complex sinusoids embedded in white noise. You can
write the autocorrelation matrix R for this system as the sum of the signal
autocorrelation matrix (S) and the noise autocorrelation matrix (W):

R = S + W. There is a close relationship between the eigenvectors of the signal
autocorrelation matrix and the signal and noise subspaces. The eigenvectors
v of S span the same signal subspace as the signal vectors. If the system
containsM complex sinusoids and the order of the autocorrelation matrix is p,
eigenvectors vM+1 through vp+1 span the noise subspace of the autocorrelation
matrix.

Frequency Estimator Functions. To generate their frequency estimates,
eigenanalysis methods calculate functions of the vectors in the signal and
noise subspaces. Both the MUSIC and EV techniques choose a function that
goes to infinity (denominator goes to zero) at one of the sinusoidal frequencies
in the input signal. Using digital technology, the resulting estimate has sharp
peaks at the frequencies of interest; this means that there might not be
infinity values in the vectors.

The MUSIC estimate is given by the formula

ˆ

| () |

()P

e f v

f

k p

M
H

k

MUSIC =

= +
∑

1

1

2

where the v_k are the eigenvectors of the noise subspace and e(f) is a vector
of complex sinusoids.

e f e e ej f j f j M T() []()= … −1 2 4 2 1

v represents the eigenvectors of the input signal’s correlation matrix; vk is
the kth eigenvector. H is the conjugate transpose operator. The eigenvectors
used in the sum correspond to the smallest eigenvalues and span the noise
subspace (p is the size of the signal subspace).

The expression e(f)Hvk is equivalent to a Fourier transform (the vector
e(f) consists of complex exponentials). This form is useful for numeric

6-44

Spectral Analysis

computation because the FFT can be computed for each vk and then the
squared magnitudes can be summed.

The EV method weights the summation by the eigenvalues of the correlation
matrix:

ˆ

| () |

()P

e f v

f k

k p

M
H

k

EV =

= +
∑

1

2

The pmusic and peig functions in this toolbox interpret their first input
either as a signal matrix or as a correlation matrix (if the 'corr' input flag is
set). In the former case, the singular value decomposition of the signal matrix
is used to determine the signal and noise subspaces. In the latter case, the
eigenvalue decomposition of the correlation matrix is used to determine the
signal and noise subspaces.

Using FFT to Obtain Simple Spectral Analysis Plots
In general, you use spectrum objects to perform spectral analysis, but if you
want to create spectral analysis plots manually starting with an FFT, follow
this example. Assume you have a 200 Hz sinusoid signal and a sampling
frequency of 1024.

Fs = 1024; % Sampling frequency
t = 0:1/Fs:1; % Time vector
x = sin(2*pi*t*200); % 200 Hz sinusoid signal

Now, you take the FFT of the signal. To optimize the FFT, you pad the signal
with enough zeros so that its length is a power of 2. The fft automatically
does this if you provide an input argument specifying the length of the FFT.

nfft = 2^(nextpow2(length(x))); % Find next power of 2
fftx = fft(x,nfft);

nfft is even, so the magnitude of the FFT will be symmetric, in that the first
(1+nfft/2) points are unique, and the rest are symmetrically redundant.
The DC component of x is fftx(1) and the Nyquist frequency is at
fftx(1+nfft/2). Note that if nfft is odd, the Nyquist frequency component
is not evaluated, and the number of unique points is (nfft+1)/2 . You can use

6-45

6 Statistical Signal Processing

the ceil function to determine the number of unique points. In this example,
you know the FFT is symmetric, so you keep only the unique points. Then,
calculate the magnitude of the FFT.

NumUniquePts = ceil((nfft+1)/2);
fftx = fftx(1:NumUniquePts);
mx = abs(fftx);

MATLAB does not scale the output of the FFT by the length of the input, so
you scale the it so that it is not a function of the length of x. Then, square the
magnitude and since you dropped half of the FFT, multiply by 2 to retain the
same amount of energy, but do not multiply the DC or Nyquist components
by 2. You then obtain an evenly spaced frequency vector with NumUniquePts
points.

mx = mx/length(x);
mx = mx.^2;
if rem(nfft, 2) % Odd nfft excludes Nyquist

mx(2:end) = mx(2:end)*2;
else

mx(2:end -1) = mx(2:end -1)*2;
end

f = (0:NumUniquePts-1)*Fs/nfft;

Finally, plot the resulting spectrum.

plot(f,mx);
title('Power Spectrum of a 200Hz Sine Wave');
xlabel('Frequency (Hz)');
ylabel('Power');

6-46

Spectral Analysis

6-47

6 Statistical Signal Processing

Selected Bibliography
[1] Hayes, M.H. Statistical Digital Signal Processing and Modeling. New
York: John Wiley & Sons, 1996.

[2] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice
Hall, 1988.

[3] Marple, S.L. Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice
Hall, 1987.

[4] Orfanidis, S.J. Introduction to Signal Processing. Upper Saddle River, NJ:
Prentice Hall, 1996.

[5] Percival, D.B., and A.T. Walden. Spectral Analysis for Physical
Applications: Multitaper and Conventional Univariate Techniques.
Cambridge: Cambridge University Press, 1993.

[6] Proakis, J.G., and D.G. Manolakis. Digital Signal Processing: Principles,
Algorithms, and Applications. Englewood Cliffs, NJ: Prentice Hall, 1996.

[7] Stoica, P., and R. Moses. Introduction to Spectral Analysis. Upper Saddle
River, NJ: Prentice Hall, 1997.

[8] Welch, P.D. “The Use of Fast Fourier Transform for the Estimation of
Power Spectra: A Method Based on Time Averaging Over Short, Modified
Periodograms.” IEEE Trans. Audio Electroacoust. Vol. AU-15 (June 1967).
Pgs. 70-73.

6-48

7

Special Topics

• “Windows” on page 7-2

• “Parametric Modeling” on page 7-13

• “Resampling” on page 7-23

• “Cepstrum Analysis” on page 7-26

• “FFT-Based Time-Frequency Analysis” on page 7-30

• “Median Filtering” on page 7-31

• “Communications Applications” on page 7-32

• “Deconvolution” on page 7-37

• “Specialized Transforms” on page 7-38

• “Selected Bibliography” on page 7-49

7 Special Topics

Windows

In this section...

“Why Use Windows?” on page 7-2

“Available Window Functions” on page 7-2

“Graphical User Interface Tools” on page 7-3

“Basic Shapes” on page 7-3

“Generalized Cosine Windows” on page 7-6

“Kaiser Window” on page 7-8

“Chebyshev Window” on page 7-12

Why Use Windows?
In both digital filter design and spectral estimation, the choice of a windowing
function can play an important role in determining the quality of overall
results. The main role of the window is to damp out the effects of the Gibbs
phenomenon that results from truncation of an infinite series.

Available Window Functions

Window Function

Bartlett-Hann window barthannwin

Bartlett window bartlett

Blackman window blackman

Blackman-Harris window blackmanharris

Bohman window bohmanwin

Chebyshev window chebwin

Flat Top window flattopwin

Gaussian window gausswin

Hamming window hamming

7-2

Windows

Window Function

Hann window hann

Kaiser window kaiser

Nuttall’s Blackman-Harris window nuttallwin

Parzen (de la Valle-Poussin) window parzenwin

Rectangular window rectwin

Tapered cosine window tukeywin

Triangular window triang

Graphical User Interface Tools
Two graphical user interface tools are provided for working with windows in
the Signal Processing Toolbox product:

• Window Design and Analysis Tool (wintool)

• Window Visualization Tool (wvtool)

Refer to the reference pages for these tools for detailed information.

Basic Shapes
The basic window is the rectangular window, a vector of ones of the
appropriate length. A rectangular window of length 50 is

n = 50;
w = rectwin(n);

This toolbox stores windows in column vectors by convention, so an equivalent
expression is

w = ones(50,1);

To use the Window Design and Analysis Tool to create this window, type

wintool

7-3

7 Special Topics

wintool opens with a default Hamming window. In the Current Window
Information panel, set Type = Rectangular and Length = 50 and then
press Apply.

The Bartlett (or triangular) window is the convolution of two rectangular
windows. The functions bartlett and triang compute similar triangular
windows, with three important differences. The bartlett function always
returns a window with two zeros on the ends of the sequence, so that for n
odd, the center section of bartlett(n+2) is equivalent to triang(n):

Bartlett = bartlett(7);
isequal(Bartlett(2:end-1),triang(5))
% Returns a 1

7-4

Windows

For n even, bartlett is still the convolution of two rectangular sequences.
There is no standard definition for the triangular window for n even; the
slopes of the line segments of the triang result are slightly steeper than
those of bartlett in this case:

w = bartlett(8);
[w(2:7) triang(6)]

You can see the difference between odd and even Bartlett windows in WinTool.

The final difference between the Bartlett and triangular windows is evident in
the Fourier transforms of these functions. The Fourier transform of a Bartlett
window is negative for n even. The Fourier transform of a triangular window,
however, is always nonnegative.

7-5

7 Special Topics

The following figure, which is a zoomed version of the Frequency domain plot
of 8-point Bartlett and Triangular windows with the y-axis set to Zerophase,
illustrates this difference.

This difference can be important when choosing a window for some
spectral estimation techniques, such as the Blackman-Tukey method.
Blackman-Tukey forms the spectral estimate by calculating the Fourier
transform of the autocorrelation sequence. The resulting estimate might be
negative at some frequencies if the window’s Fourier transform is negative
(see Kay [1], pg. 80).

Generalized Cosine Windows
Blackman, flat top, Hamming, Hann, and rectangular windows are all special
cases of the generalized cosine window. These windows are combinations of
sinusoidal sequences with frequencies that are multiples of , where
N is the window length. One special case is the Blackman window:

N = 128;
A = 0.42; B = 0.5; C = 0.08;
ind = (0:N-1)'*2*pi/(N-1);
w = A - B*cos(ind) + C*cos(2*ind);

Changing the values of the constants A, B, and C in the previous expression
generates different generalized cosine windows like the Hamming and Hann

7-6

Windows

windows. Adding additional cosine terms of higher frequency generates the
flat top window. The concept behind these windows is that by summing
the individual terms to form the window, the low frequency peaks in the
frequency domain combine in such a way as to decrease sidelobe height. This
has the side effect of increasing the mainlobe width.

The Hamming and Hann windows are two-term generalized cosine windows,
given by A = 0.54, B = 0.46 for the Hamming and A = 0.5, B = 0.5 for the Hann.

Note that the definition of the generalized cosine window shown in the earlier
MATLAB code yields zeros at samples 1 and n for A = 0.5 and B = 0.5.

This WinTool compares Blackman, Hamming, Hann, and Flat Top windows.

7-7

7 Special Topics

Kaiser Window
The Kaiser window is an approximation to the prolate-spheroidal window, for
which the ratio of the mainlobe energy to the sidelobe energy is maximized.
For a Kaiser window of a particular length, the parameter β controls the
sidelobe height. For a given β, the sidelobe height is fixed with respect to
window length. The statement kaiser(n,beta) computes a length n Kaiser
window with parameter beta.

Examples of Kaiser windows with length 50 and beta parameters of 1, 4, and
9 are shown in this wintool example.

To create these Kaiser windows using the MATLAB command line,

n = 50;

7-8

Windows

w1 = kaiser(n,1);
w2 = kaiser(n,4);
w3 = kaiser(n,9);
[W1,f] = freqz(w1/sum(w1),1,512,2);
[W2,f] = freqz(w2/sum(w2),1,512,2);
[W3,f] = freqz(w3/sum(w3),1,512,2);
plot(f,20*log10(abs([W1 W2 W3]))); grid;
legend('beta = 1','beta = 4','beta = 9',3)

As β increases, the sidelobe height decreases and the mainlobe width
increases. This wintool shows how the sidelobe height stays the same for a
fixed β parameter as the length is varied.

To create these Kaiser windows using the MATLAB command line:

7-9

7 Special Topics

w1 = kaiser(50,4);
w2 = kaiser(20,4);
w3 = kaiser(101,4);
[W1,f] = freqz(w1/sum(w1),1,512,2);
[W2,f] = freqz(w2/sum(w2),1,512,2);
[W3,f] = freqz(w3/sum(w3),1,512,2);
plot(f,20*log10(abs([W1 W2 W3]))); grid;
legend('length = 50','length = 20','length = 101')

Kaiser Windows in FIR Design
There are two design formulas that can help you design FIR filters to meet
a set of filter specifications using a Kaiser window. To achieve a sidelobe
height of -α dB, the beta parameter is

For a transition width of Δω rad/s, use the length

Filters designed using these heuristics will meet the specifications
approximately, but you should verify this. To design a lowpass filter with
cutoff frequency 0.5π rad/s, transition width 0.2π rad/s, and 40 dB of
attenuation in the stopband, try

[n,wn,beta] = kaiserord([0.4 0.6]*pi,[1 0],[0.01 0.01],2*pi);
h = fir1(n,wn,kaiser(n+1,beta),'noscale');

The kaiserord function estimates the filter order, cutoff frequency, and
Kaiser window beta parameter needed to meet a given set of frequency
domain specifications.

7-10

Windows

The ripple in the passband is roughly the same as the ripple in the stopband.
As you can see from the frequency response, this filter nearly meets the
specifications:

fvtool(h,1);

7-11

7 Special Topics

Chebyshev Window
The Chebyshev window minimizes the mainlobe width, given a particular
sidelobe height. It is characterized by an equiripple behavior, that is, its
sidelobes all have the same height.

As shown in the Time Domain plot, the Chebyshev window has large spikes
at its outer samples.

For a detailed discussion of the characteristics and applications of the various
window types, see Oppenheim and Schafer [3], pgs. 444-462, and Parks and
Burrus [4], pgs. 71-73.

7-12

Parametric Modeling

Parametric Modeling

In this section...

“What is Parametric Modeling” on page 7-13

“Available Parametric Modeling Functions” on page 7-13

“Time-Domain Based Modeling” on page 7-14

“Frequency-Domain Based Modeling” on page 7-19

What is Parametric Modeling
Parametric modeling techniques find the parameters for a mathematical
model describing a signal, system, or process. These techniques use known
information about the system to determine the model. Applications for
parametric modeling include speech and music synthesis, data compression,
high-resolution spectral estimation, communications, manufacturing, and
simulation.

Note Since yulewalk is geared explicitly toward ARMA filter design, it is
discussed in Chapter 2, “Filter Design and Implementation”.

pburg and pyulear are discussed in Chapter 6, “Statistical Signal Processing”,
with the other (nonparametric) spectral estimation methods.

Available Parametric Modeling Functions
The toolbox parametric modeling functions operate with the rational transfer
function model. Given appropriate information about an unknown system
(impulse or frequency response data, or input and output sequences), these
functions find the coefficients of a linear system that models the system.

One important application of the parametric modeling functions is in the
design of filters that have a prescribed time or frequency response. These
functions provide a data-oriented alternative to the IIR and FIR filter design
functions discussed in Chapter 2, “Filter Design and Implementation”.

7-13

7 Special Topics

Here is a summary of the parametric modeling functions in this toolbox. Note
that “System Identification Toolbox” software provides a more extensive
collection of parametric modeling functions.

Domain Functions Description

arburg Generate all-pole filter coefficients that
model an input data sequence using the
Levinson-Durbin algorithm.

arcov Generate all-pole filter coefficients
that model an input data sequence by
minimizing the forward prediction error.

armcov Generate all-pole filter coefficients
that model an input data sequence by
minimizing the forward and backward
prediction errors.

aryule Generate all-pole filter coefficients that
model an input data sequence using an
estimate of the autocorrelation function.

lpc, levinson Linear Predictive Coding. Generate
all-pole recursive filter whose impulse
response matches a given sequence.

prony Generate IIR filter whose impulse
response matches a given sequence.

Time

stmcb Find IIR filter whose output, given a
specified input sequence, matches a given
output sequence.

Frequency invfreqz,
invfreqs

Generate digital or analog filter
coefficients given complex frequency
response data.

Time-Domain Based Modeling
The lpc, prony, and stmcb functions find the coefficients of a digital rational
transfer function that approximates a given time-domain impulse response.
The algorithms differ in complexity and accuracy of the resulting model.

7-14

Parametric Modeling

Linear Prediction
Linear prediction modeling assumes that each output sample of a signal,
x(k), is a linear combination of the past n outputs (that is, it can be linearly
predicted from these outputs), and that the coefficients are constant from
sample to sample:

An nth-order all-pole model of a signal x is

a = lpc(x,n)

To illustrate lpc, create a sample signal that is the impulse response of an
all-pole filter with additive white noise:

randn('state',0);
x = impz(1,[1 0.1 0.1 0.1 0.1],10) + randn(10,1)/10;

The coefficients for a fourth-order all-pole filter that models the system are

a = lpc(x,4)
a =

1.0000 0.2574 0.1666 0.1203 0.2598

lpc first calls xcorr to find a biased estimate of the correlation function of x,
and then uses the Levinson-Durbin recursion, implemented in the levinson
function, to find the model coefficients a. The Levinson-Durbin recursion is a
fast algorithm for solving a system of symmetric Toeplitz linear equations.
lpc’s entire algorithm for n = 4 is

r = xcorr(x);
r(1:length(x)-1) = []; % Remove corr. at negative lags
a = levinson(r,4)
a =

1.0000 0.2574 0.1666 0.1203 0.2598

You could form the linear prediction coefficients with other assumptions by
passing a different correlation estimate to levinson, such as the biased
correlation estimate:

r = xcorr(x,'biased');

7-15

7 Special Topics

r(1:length(x)-1) = []; % Remove corr. at negative lags
a = levinson(r,4)
a =

1.0000 0.2574 0.1666 0.1203 0.2598

Prony’s Method (ARMA Modeling)
The prony function models a signal using a specified number of poles and
zeros. Given a sequence x and numerator and denominator orders n and m,
respectively, the statement

[b,a] = prony(x,n,m)

finds the numerator and denominator coefficients of an IIR filter whose
impulse response approximates the sequence x.

The prony function implements the method described in [4] Parks and Burrus
(pgs. 226-228). This method uses a variation of the covariance method of AR
modeling to find the denominator coefficients a, and then finds the numerator
coefficients b for which the resulting filter’s impulse response matches exactly
the first n + 1 samples of x. The filter is not necessarily stable, but it can
potentially recover the coefficients exactly if the data sequence is truly an
autoregressive moving-average (ARMA) process of the correct order.

Note The functions prony and stmcb (described next) are more accurately
described as ARX models in system identification terminology. ARMA
modeling assumes noise only at the inputs, while ARX assumes an external
input. prony and stmcb know the input signal: it is an impulse for prony
and is arbitrary for stmcb.

A model for the test sequence x (from the earlier lpc example) using a
third-order IIR filter is

[b,a] = prony(x,3,3)
b =

0.9567 -0.3351 0.1866 -0.3782
a =

1.0000 -0.0716 0.2560 -0.2752

7-16

Parametric Modeling

The impz command shows how well this filter’s impulse response matches
the original sequence:

format long
[x impz(b,a,10)]

ans =
0.95674351884718 0.95674351884718

-0.26655843782381 -0.26655843782381
-0.07746676935252 -0.07746676935252
-0.05223235796415 -0.05223235796415
-0.18754713506815 -0.05726777015121
0.15348154656430 -0.01204969926150
0.13986742016521 -0.00057632797226
0.00609257234067 -0.01271681570687
0.03349954614087 -0.00407967053863
0.01086719328209 0.00280486049427

Notice that the first four samples match exactly. For an example of exact
recovery, recover the coefficients of a Butterworth filter from its impulse
response:

[b,a] = butter(4,.2);
h = impz(b,a,26);
[bb,aa] = prony(h,4,4);

Try this example; you’ll see that bb and aamatch the original filter coefficients
to within a tolerance of 10-13.

Steiglitz-McBride Method (ARMA Modeling)
The stmcb function determines the coefficients for the system b(z)/a(z) given
an approximate impulse response x, as well as the desired number of zeros
and poles. This function identifies an unknown system based on both input
and output sequences that describe the system’s behavior, or just the impulse
response of the system. In its default mode, stmcb works like prony.

[b,a] = stmcb(x,3,3)
b =

0.9567 -0.5181 0.5702 -0.5471

7-17

7 Special Topics

a =
1.0000 -0.2384 0.5234 -0.3065

stmcb also finds systems that match given input and output sequences:

y = filter(1,[1 1],x); % Create an output signal.
[b,a] = stmcb(y,x,0,1)
b =

1.0000
a =

1 1

In this example, stmcb correctly identifies the system used to create y from x.

The Steiglitz-McBride method is a fast iterative algorithm that solves for
the numerator and denominator coefficients simultaneously in an attempt
to minimize the signal error between the filter output and the given output
signal. This algorithm usually converges rapidly, but might not converge
if the model order is too large. As for prony, stmcb’s resulting filter is not
necessarily stable due to its exact modeling approach.

stmcb provides control over several important algorithmic parameters; modify
these parameters if you are having trouble modeling the data. To change the
number of iterations from the default of five and provide an initial estimate
for the denominator coefficients:

n = 10; % Number of iterations
a = lpc(x,3); % Initial estimates for denominator
[b,a] = stmcb(x,3,3,n,a);

The function uses an all-pole model created with prony as an initial estimate
when you do not provide one of your own.

To compare the functions lpc, prony, and stmcb, compute the signal error
in each case:

a1 = lpc(x,3);
[b2,a2] = prony(x,3,3);
[b3,a3] = stmcb(x,3,3);
[x-impz(1,a1,10) x-impz(b2,a2,10) x-impz(b3,a3,10)]

7-18

Parametric Modeling

ans =
-0.0433 0 -0.0000
-0.0240 0 0.0234
-0.0040 0 -0.0778
-0.0448 -0.0000 0.0498
-0.2130 -0.1303 -0.0742
0.1545 0.1655 0.1270
0.1426 0.1404 0.1055
0.0068 0.0188 0.0465
0.0329 0.0376 0.0530
0.0108 0.0081 -0.0162

sum(ans.^2)
ans =

0.0953 0.0659 0.0471

In comparing modeling capabilities for a given order IIR model, the last result
shows that for this example, stmcb performs best, followed by prony, then
lpc. This relative performance is typical of the modeling functions.

Frequency-Domain Based Modeling
The invfreqs and invfreqz functions implement the inverse operations of
freqs and freqz; they find an analog or digital transfer function of a specified
order that matches a given complex frequency response. Though the following
examples demonstrate invfreqz, the discussion also applies to invfreqs.

To recover the original filter coefficients from the frequency response of a
simple digital filter:

[b,a] = butter(4,0.4) % Design Butterworth lowpass
b =

0.0466 0.1863 0.2795 0.1863 0.0466
a =

1.0000 -0.7821 0.6800 -0.1827 0.0301

[h,w] = freqz(b,a,64); % Compute frequency response
[b4,a4] = invfreqz(h,w,4,4) % Model: n = 4, m = 4
b4 =

0.0466 0.1863 0.2795 0.1863 0.0466

7-19

7 Special Topics

a4 =
1.0000 -0.7821 0.6800 -0.1827 0.0301

The vector of frequencies w has the units in rad/sample, and the frequencies
need not be equally spaced. invfreqz finds a filter of any order to fit the
frequency data; a third-order example is

[b4,a4] = invfreqz(h,w,3,3) % Find third-order IIR
b4 =

0.0464 0.1785 0.2446 0.1276
a4 =

1.0000 -0.9502 0.7382 -0.2006

Both invfreqs and invfreqz design filters with real coefficients; for a data
point at positive frequency f, the functions fit the frequency response at both
f and -f.

By default invfreqz uses an equation error method to identify the best model
from the data. This finds b and a in

by creating a system of linear equations and solving them with the MATLAB
\ operator. Here A(w(k)) and B(w(k)) are the Fourier transforms of the
polynomials a and b respectively at the frequency w(k), and n is the number
of frequency points (the length of h and w). wt(k) weights the error relative
to the error at different frequencies. The syntax

invfreqz(h,w,n,m,wt)

includes a weighting vector. In this mode, the filter resulting from invfreqz
is not guaranteed to be stable.

invfreqz provides a superior (“output-error”) algorithm that solves the direct
problem of minimizing the weighted sum of the squared error between the
actual frequency response points and the desired response

7-20

Parametric Modeling

To use this algorithm, specify a parameter for the iteration count after the
weight vector parameter:

wt = ones(size(w)); % Create unity weighting vector
[b30,a30] = invfreqz(h,w,3,3,wt,30) % 30 iterations
b30 =

0.0464 0.1829 0.2572 0.1549
a30 =

1.0000 -0.8664 0.6630 -0.1614

The resulting filter is always stable.

Graphically compare the results of the first and second algorithms to the
original Butterworth filter with FVTool (and select the Magnitude and Phase
Responses):

fvtool(b,a,b4,a4,b30,a30)

7-21

7 Special Topics

To verify the superiority of the fit numerically, type

sum(abs(h-freqz(b4,a4,w)).^2) % Total error, algorithm 1
ans =

0.0200
sum(abs(h-freqz(b30,a30,w)).^2) % Total error, algorithm 2
ans =

0.0096

7-22

Resampling

Resampling

In this section...

“Available Resampling Functions” on page 7-23

“resample Function” on page 7-23

“decimate and interp Functions” on page 7-25

“upfirdn Function” on page 7-25

“spline Function” on page 7-25

Available Resampling Functions
The toolbox provides a number of functions that resample a signal at a higher
or lower rate.

Operation Function

Apply FIR filter with
resampling

upfirdn

Cubic spline interpolation spline

Decimation decimate

Interpolation interp

Other 1-D interpolation interp1

Resample at new rate resample

resample Function
The resample function changes the sampling rate for a sequence to any rate
that is a ratio of two integers. The basic syntax for resample is

y = resample(x,p,q)

where the function resamples the sequence x at p/q times the original
sampling rate. The length of the result y is p/q times the length of x.

7-23

7 Special Topics

One resampling application is the conversion of digitized audio signals from
one sampling rate to another, such as from 48 kHz (the digital audio tape
standard) to 44.1 kHz (the compact disc standard).

The example file contains a length 4001 vector of speech sampled at 7418 Hz:

clear
load mtlb
whos

Name Size Bytes Class
Fs 1x1 8 double array
mtlb 4001x1 32008 double array

Grand total is 4002 elements using 32016 bytes
Fs
Fs =

7418

To play this speech signal on a workstation that can only play sound at
8192 Hz, use the rat function to find integers p and q that yield the correct
resampling factor:

[p,q] = rat(8192/Fs,0.0001)
p =

127
q =

115

Since p/q*Fs = 8192.05 Hz, the tolerance of 0.0001 is acceptable; to
resample the signal at very close to 8192 Hz:

y = resample(mtlb,p,q);

resample applies a lowpass filter to the input sequence to prevent aliasing
during resampling. It designs this filter using the firls function with a
Kaiser window. The syntax

resample(x,p,q,l,beta)

7-24

Resampling

controls the filter’s length and the beta parameter of the Kaiser window.
Alternatively, use the function intfilt to design an interpolation filter b
and use it with

resample(x,p,q,b)

decimate and interp Functions
The decimate and interp functions do the same thing as resample with p = 1
and q = 1, respectively. These functions provide different anti-alias filtering
options, and they incur a slight signal delay due to filtering. The interp
function is significantly less efficient than the resample function with q = 1.

upfirdn Function
The toolbox also contains a function, upfirdn, that applies an FIR filter to an
input sequence and outputs the filtered sequence at a sample rate different
than its original. See “Multirate Filter Bank Implementation” on page 1-8.

spline Function
The standard MATLAB environment contains a function, spline, that works
with irregularly spaced data. The MATLAB function interp1 performs
interpolation, or table lookup, using various methods including linear and
cubic interpolation.

7-25

7 Special Topics

Cepstrum Analysis

In this section...

“What Is a Cepstrum?” on page 7-26

“Inverse Complex Cepstrum” on page 7-29

What Is a Cepstrum?
Cepstrum analysis is a nonlinear signal processing technique with a variety
of applications in areas such as speech and image processing.

The complex cepstrum for a sequence x is calculated by finding the complex
natural logarithm of the Fourier transform of x, then the inverse Fourier
transform of the resulting sequence.

The toolbox function cceps performs this operation, estimating the complex
cepstrum for an input sequence. It returns a real sequence the same size
as the input sequence:

xhat = cceps(x)

For sequences that have roots on the unit circle, cepstrum analysis has
numerical problems. See Oppenheim and Schafer [2] for information.

The complex cepstrum transformation is central to the theory and application
of homomorphic systems, that is, systems that obey certain general rules
of superposition. See Oppenheim and Schafer [3] for a discussion of the
complex cepstrum and homomorphic transformations, with details on speech
processing applications.

Try using cceps in an echo detection application. First, create a 45 Hz sine
wave sampled at 100 Hz:

t = 0:0.01:1.27;
s1 = sin(2*pi*45*t);

7-26

Cepstrum Analysis

Add an echo of the signal, with half the amplitude, 0.2 seconds after the
beginning of the signal.

s2 = s1 + 0.5*[zeros(1,20) s1(1:108)];

The complex cepstrum of this new signal is

c = cceps(s2);
plot(t,c)

Note that the complex cepstrum shows a peak at 0.2 seconds, indicating the
echo.

The real cepstrum of a signal x, sometimes called simply the cepstrum, is
calculated by determining the natural logarithm of magnitude of the Fourier
transform of x, then obtaining the inverse Fourier transform of the resulting
sequence.

7-27

7 Special Topics

The toolbox function rceps performs this operation, returning the real
cepstrum for a sequence x. The returned sequence is a real-valued vector the
same size as the input vector:

y = rceps(x)

By definition, you cannot reconstruct the original sequence from its real
cepstrum transformation, as the real cepstrum is based only on the magnitude
of the Fourier transform for the sequence (see Oppenheim and Schafer [3]).
The rceps function also returns a unique minimum-phase sequence that
has the same real cepstrum as x. To obtain both the real cepstrum and the
minimum phase reconstruction for a sequence, use

[y,ym] = rceps(x)

where y is the real cepstrum and ym is the minimum phase reconstruction
of x. The following example shows that one output of rceps is a unique
minimum-phase sequence with the same real cepstrum as x.

y = [4 1 5]; % Non-minimum phase sequence
[xhat,yhat] = rceps(y);
xhat2= rceps(yhat);
[xhat' xhat2']

ans =
1.6225 1.6225
0.3400 0.3400
0.3400 0.3400

Summary of Cepstrum Functions
The Signal Processing Toolbox product provides three functions for cepstrum
analysis:

Operation Function

Complex cepstrum cceps

Inverse complex cepstrum icceps

Real cepstrum rceps

7-28

Cepstrum Analysis

Inverse Complex Cepstrum
To invert the complex cepstrum, use the icceps function. Inversion is
complicated by the fact that the cceps function performs a data dependent
phase modification so that the unwrapped phase of its input is continuous at
zero frequency. The phase modification is equivalent to an integer delay. This
delay term is returned by cceps if you ask for a second output. For example:

x = 1:10;
[xhat,delay] = cceps(x)
xhat =

Columns 1 through 4
2.2428 -0.0420 -0.0210 0.0045

Columns 5 through 8
0.0366 0.0788 0.1386 0.2327

Columns 9 through 10
0.4114 0.9249

delay =
1

To invert the complex cepstrum, use iccepswith the original delay parameter:

icc = icceps(xhat,2)
ans =

Columns 1 through 4
2.0000 3.0000 4.0000 5.0000

Columns 5 through 8
6.0000 7.0000 8.0000 9.0000

Columns 9 through 10
10.0000 1.0000

As shown in the above example, with any modification of the complex
cepstrum, the original delay term may no longer be valid. You will not be able
to invert the complex cepstrum exactly.

7-29

7 Special Topics

FFT-Based Time-Frequency Analysis
The Signal Processing Toolbox product provides a function, spectrogram,
that returns the time-dependent Fourier transform for a sequence, or displays
this information as a spectrogram. The toolbox also includes a spectrogram
demo. The time-dependent Fourier transform is the discrete-time Fourier
transform for a sequence, computed using a sliding window. This form of the
Fourier transform, also known as the short-time Fourier transform (STFT),
has numerous applications in speech, sonar, and radar processing. The
spectrogram of a sequence is the magnitude of the time-dependent Fourier
transform versus time.

To display the spectrogram of a linear FM signal:

fs = 10000;
t = 0:1/fs:2;
x = vco(sawtooth(2*pi*t,.75),[0.1 0.4]*fs,fs);
spectrogram(x,kaiser(256,5),220,512,fs,'yaxis')

7-30

Median Filtering

Median Filtering
The function medfilt1 implements one-dimensional median filtering, a
nonlinear technique that applies a sliding window to a sequence. The median
filter replaces the center value in the window with the median value of all the
points within the window [5]. In computing this median, medfilt1 assumes
zeros beyond the input points.

When the number of elements n in the window is even, medfilt1 sorts the
numbers, then takes the average of the n/2 and n/2 + 1 elements.

Two simple examples with fourth- and third-order median filters are

medfilt1([4 3 5 2 8 9 1],4)
ans =

1.500 3.500 3.500 4.000 6.500 5.000 4.500

medfilt1([4 3 5 2 8 9 1],3)
ans =

3 4 3 5 8 8 1

See the medfilt2 function in the Image Processing Toolbox™ documentation
for information on two-dimensional median filtering.

7-31

7 Special Topics

Communications Applications

In this section...

“Modulation” on page 7-32

“Demodulation” on page 7-33

“Voltage Controlled Oscillator” on page 7-36

Modulation
Modulation varies the amplitude, phase, or frequency of a carrier signal with
reference to a message signal. The modulate function modulates a message
signal with a specified modulation method.

The basic syntax for the modulate function is

y = modulate(x,fc,fs,'method',opt)

where:

• x is the message signal.

• fc is the carrier frequency.

• fs is the sampling frequency.

• method is a flag for the desired modulation method.

• opt is any additional argument that the method requires. (Not all
modulation methods require an option argument.)

The table below summarizes the modulation methods provided; see the
documentation for modulate, demod, and vco for complete details on each.

Method Description

amdsb-sc or am Amplitude modulation, double sideband, suppressed
carrier

amdsb-tc Amplitude modulation, double sideband, transmitted
carrier

7-32

Communications Applications

Method Description

amssb Amplitude modulation, single sideband

fm Frequency modulation

pm Phase modulation

ppm Pulse position modulation

pwm Pulse width modulation

qam Quadrature amplitude modulation

If the input x is an array rather than a vector, modulate modulates each
column of the array.

To obtain the time vector that modulate uses to compute the modulated
signal, specify a second output parameter:

[y,t] = modulate(x,fc,fs,'method',opt)

Demodulation
The demod function performs demodulation, that is, it obtains the original
message signal from the modulated signal:

The syntax for demod is

x = demod(y,fc,fs,'method',opt)

demod uses any of the methods shown for modulate, but the syntax for
quadrature amplitude demodulation requires two output parameters:

[X1,X2] = demod(y,fc,fs,'qam')

If the input y is an array, demod demodulates all columns.

Try modulating and demodulating a signal. A 50 Hz sine wave sampled at
1000 Hz is

t = (0:1/1000:2);
x = sin(2*pi*50*t);

7-33

7 Special Topics

With a carrier frequency of 200 Hz, the modulated and demodulated versions
of this signal are

y = modulate(x,200,1000,'am');
z = demod(y,200,1000,'am');

To plot portions of the original, modulated, and demodulated signal:

figure; plot(t(1:150),x(1:150)); title('Original Signal');
figure; plot(t(1:150),y(1:150)); title('Modulated Signal');
figure; plot(t(1:150),z(1:150)); title('Demodulated Signal');

Original Signal

7-34

Communications Applications

Modulated Signal

Demodulated Signal

7-35

7 Special Topics

Note The demodulated signal is attenuated because demodulation includes
two steps: multiplication and lowpass filtering. The multiplication produces a
component with frequency centered at 0 Hz and a component with frequency
at twice the carrier frequency. The filtering removes the higher frequency
component of the signal, producing the attenuated result.

Voltage Controlled Oscillator
The voltage controlled oscillator function vco creates a signal that oscillates
at a frequency determined by the input vector. The basic syntax for vco is

y = vco(x,fc,fs)

where fc is the carrier frequency and fs is the sampling frequency.

To scale the frequency modulation range, use

y = vco(x,[Fmin Fmax],fs)

In this case, vco scales the frequency modulation range so values of x on the
interval [-1 1] map to oscillations of frequency on [Fmin Fmax].

If the input x is an array, vco produces an array whose columns oscillate
according to the columns of x.

See “FFT-Based Time-Frequency Analysis” on page 7-30 for an example using
the vco function.

7-36

Deconvolution

Deconvolution
Deconvolution, or polynomial division, is the inverse operation of convolution.
Deconvolution is useful in recovering the input to a known filter, given the
filtered output. This method is very sensitive to noise in the coefficients,
however, so use caution in applying it.

The syntax for deconv is

[q,r] = deconv(b,a)

where b is the polynomial dividend, a is the divisor, q is the quotient, and r
is the remainder.

To try deconv, first convolve two simple vectors a and b (see Chapter 1,
“Filtering, Linear Systems and Transforms Overview” for a description of the
convolution function):

a = [1 2 3];
b = [4 5 6];
c = conv(a,b)
c =

4 13 28 27 18

Now use deconv to deconvolve b from c:

[q,r] = deconv(c,a)
q =

4 5 6
r =

0 0 0 0 0

7-37

7 Special Topics

Specialized Transforms

In this section...

“Chirp z-Transform” on page 7-38

“Discrete Cosine Transform” on page 7-39

“Hilbert Transform” on page 7-42

“Walsh–Hadamard Transform” on page 7-43

Chirp z-Transform
The chirp z-transform (CZT), useful in evaluating the z-transform along
contours other than the unit circle. The chirp z-transform is also more efficient
than the DFT algorithm for the computation of prime-length transforms,
and it is useful in computing a subset of the DFT for a sequence. The chirp
z-transform, or CZT, computes the z-transform along spiral contours in the
z-plane for an input sequence. Unlike the DFT, the CZT is not constrained to
operate along the unit circle, but can evaluate the z-transform along contours
described by

where A is the complex starting point, W is a complex scalar describing the
complex ratio between points on the contour, and M is the length of the
transform.

One possible spiral is

A = 0.8*exp(j*pi/6);
W = 0.995*exp(-j*pi*.05);
M = 91;
z = A*(W.^(-(0:M-1)));
zplane([],z.')

7-38

Specialized Transforms

czt(x,M,W,A) computes the z-transform of x on these points.

An interesting and useful spiral set is m evenly spaced samples around the
unit circle, parameterized by A = 1 and W = exp(-j*pi/M). The z-transform
on this contour is simply the DFT, obtained by

y = czt(x)

czt may be faster than the fft function for computing the DFT of sequences
with certain odd lengths, particularly long prime-length sequences.

Discrete Cosine Transform
The discrete cosine transform (DCT), closely related to the DFT. The DCT’s
energy compaction properties are useful for applications like signal coding.
The toolbox function dct computes the unitary discrete cosine transform,
or DCT, for an input vector or matrix. Mathematically, the unitary DCT of
an input sequence x is

7-39

7 Special Topics

where

The DCT is closely related to the discrete Fourier transform; the DFT is
actually one step in the computation of the DCT for a sequence. The DCT,
however, has better energy compaction properties, with just a few of the
transform coefficients representing the majority of the energy in the sequence.
The energy compaction properties of the DCT make it useful in applications
such as data communications.

The function idct computes the inverse DCT for an input sequence,
reconstructing a signal from a complete or partial set of DCT coefficients. The
inverse discrete cosine transform is

where

Because of the energy compaction mentioned above, it is possible to
reconstruct a signal from only a fraction of its DCT coefficients. For example,
generate a 25 Hz sinusoidal sequence, sampled at 1000 Hz:

t = (0:1/999:1);
x = sin(2*pi*25*t);

7-40

Specialized Transforms

Compute the DCT of this sequence and reconstruct the signal using only
those components with value greater than 0.1 (64 of the original 1000 DCT
coefficients):

y = dct(x) % Compute DCT
y2 = find(abs(y) < 0.9); % Use 17 coefficients
y(y2) = zeros(size(y2)); % Zero out points < 0.9
z = idct(y); % Reconstruct signal w/inverse DCT

Plot the original and reconstructed sequences:

subplot(2,1,1); plot(t,x);
title('Original Signal')
subplot(2,1,2); plot(t,z), axis([0 1 -1 1])
title('Reconstructed Signal')

One measure of the accuracy of the reconstruction is

norm(x-z)/norm(x)

that is, the norm of the difference between the original and reconstructed
signals, divided by the norm of the original signal. In this case, the
relative error of reconstruction is 0.1443. The reconstructed signal retains
approximately 85% of the energy in the original signal.

7-41

7 Special Topics

Hilbert Transform
The Hilbert transform facilitates the formation of the analytic signal. The
analytic signal is useful in the area of communications, particularly in
bandpass signal processing. The toolbox function hilbert computes the
Hilbert transform for a real input sequence x and returns a complex result of
the same length

y = hilbert(x)

where the real part of y is the original real data and the imaginary part
is the actual Hilbert transform. y is sometimes called the analytic signal,
in reference to the continuous-time analytic signal. A key property of the
discrete-time analytic signal is that its z-transform is 0 on the lower half of
the unit circle. Many applications of the analytic signal are related to this
property; for example, the analytic signal is useful in avoiding aliasing effects
for bandpass sampling operations. The magnitude of the analytic signal is the
complex envelope of the original signal.

The Hilbert transform is related to the actual data by a 90° phase shift; sines
become cosines and vice versa. To plot a portion of data (solid line) and its
Hilbert transform (dotted line):

t = (0:1/1023:1);
x = sin(2*pi*60*t);
y = hilbert(x);
plot(t(1:50),real(y(1:50))), hold on
plot(t(1:50),imag(y(1:50)),':');
axis([0 0.05 -1.1 2]);
legend('Real Part','Imaginary Part','location','northeast');

7-42

Specialized Transforms

The analytic signal is useful in calculating instantaneous attributes of a time
series, the attributes of the series at any point in time. The instantaneous
amplitude of the input sequence is the amplitude of the analytic signal. The
instantaneous phase angle of the input sequence is the (unwrapped) angle of
the analytic signal; the instantaneous frequency is the time rate of change
of the instantaneous phase angle. You can calculate the instantaneous
frequency using the MATLAB function, diff.

Walsh–Hadamard Transform
The Walsh–Hadamard transform is a non-sinusoidal, orthogonal
transformation technique that decomposes a signal into a set of basis
functions. These basis functions are Walsh functions, which are rectangular
or square waves with values of +1 or –1. Walsh–Hadamard transforms
are also known as Hadamard (see the hadamard function in the MATLAB
software), Walsh, or Walsh-Fourier transforms.

The first eight Walsh functions have these values:

7-43

7 Special Topics

Index Walsh Function Values

0 1 1 1 1 1 1 1 1

1 1 1 1 1 -1 -1 -1 -1

2 1 1 -1 -1 -1 -1 1 1

3 1 1 -1 -1 1 1 -1 -1

4 1 -1 -1 1 1 -1 -1 1

5 1 -1 -1 1 -1 1 1 -1

6 1 -1 1 -1 -1 1 -1 1

7 1 -1 1 -1 1 -1 1 -1

The Walsh–Hadamard transform returns sequency values. Sequency is a
more generalized notion of frequency and is defined as one half of the average
number of zero-crossings per unit time interval. Each Walsh function has a
unique sequency value. You can use the returned sequency values to estimate
the signal frequencies in the original signal.

Three different ordering schemes are used to store Walsh functions: sequency,
Hadamard, and dyadic. Sequency ordering, which is used in signal processing
applications, has the Walsh functions in the order shown in the table above.
Hadamard ordering, which is used in controls applications, arranges them
as 0, 4, 6, 2, 3, 7, 5, 1. Dyadic or gray code ordering, which is used in
mathematics, arranges them as 0, 1, 3, 2, 6, 7, 5, 4.

The Walsh–Hadamard transform is used in a number of applications, such
as image processing, speech processing, filtering, and power spectrum
analysis. It is very useful for reducing bandwidth storage requirements and
spread-spectrum analysis. Like the FFT, the Walsh–Hadamard transform has
a fast version, the fast Walsh–Hadamard transform (fwht). Compared to the
FFT, the FWHT requires less storage space and is faster to calculate because
it uses only real additions and subtractions, while the FFT requires complex
values. The FWHT is able to represent signals with sharp discontinuities
more accurately using fewer coefficients than the FFT. Both the FWHT and
the inverse FWHT (ifwht) are symmetric and thus, use identical calculation
processes. The FWHT and IFWHT for a signal x(t) of length N are defined as:

7-44

Specialized Transforms

y
N

x WAL n i

x y WAL n i

n i
i

N

i n
i

N

= ()

=

=

−

=

−

∑

∑

1

0

1

0

1

,

(,)

where i = 0,1,..., N-1 and WAL(n,i) are Walsh functions. Similar to the
Cooley-Tukey algorithm for the FFT, the N elements are decomposed into two
sets of N/2 elements, which are then combined using a butterfly structure to
form the FWHT. For images, where the input is typically a 2–D signal, the
FWHT coefficients are calculated by first evaluating across the rows and
then evaluating down the columns.

For the following simple signal, the resulting FWHT shows that x was created
using Walsh functions with sequency values of 0, 1, 3, and 6, which are the
non-zero indices of the transformed x. The inverse FWHT recreates the
original signal.

x = [4 2 2 0 0 2 -2 0]
y = fwht(x)
y

1 1 0 1 0 0 1 0

x1 = ifwht(y)
x1

4 2 2 0 0 2 -2 0

Using Walsh-Hadamard Transform for Spectral Analysis and
Compression of ECG Signals
The following example uses an electrocardiogram (ECG) signal to illustrate
working with the Walsh-Hadamard transform. ECG signals typically are
very large and need to be stored for analysis and retrieval at a future time.
Walsh-Hadamard transforms are particularly well-suited to this application
because they provide compression and thus, require less storage space, plus
they also provide rapid signal reconstruction.

Start with an ECG signal. For this example, we replicate it to create a longer
signal and insert some additional random noise. Then, transform the signal

7-45

7 Special Topics

using the fast Walsh-Hadamard transform and plot the original signal and
the transformed signal.

xe = ecg(512); % Single ecg wave
xr = repmat(xe,1,8); % Replicate it to create more data
x = xr + 0.1.*randn(1,length(xr)); % Add noise

% Fast Walsh-Hadamard transform. Use default values
% for the number of points to use for the transform and
% for the ordering - sequency -- why???

y = fwht(x);
figure('color','white');
subplot(2,1,1);
plot(x); % Plot original noisy signal
xlabel('Sample index');
ylabel('Amplitude');
title('ECG Signal');
subplot(2,1,2);
plot(abs(y)) % Plot magnitude of transformed signal
xlabel('Sequency index');
ylabel('Magnitude');
title('WHT Coefficients');

7-46

Specialized Transforms

The plot shows that most of the signal energy is in the lower sequency values
below approximately 1100. We will store only the first 1024 coefficients
and see if the signal can be accurately reconstructed from only these stored
coefficients.

y(1025:length(x)) = 0; % Zeroing out the higher coefficients

xHat = ifwht(y); % Signal reconstruction using inverse WHT

figure('color','white');

plot(x);

hold on

plot(xHat,'r');

xlabel('Sample index');

ylabel('ECG signal amplitude');

legend('Original Signal','Reconstructed Signal');

7-47

7 Special Topics

The reproduced signal is very close to the original signal.

To reconstruct the original signal, we stored only the first 1024 coefficients and
the ECG signal length. This represents a compression ratio of approximately
4:1. Storing more coefficients is a tradeoff between increased resolution and
increased noise, while storing fewer coefficients may cause loss of peaks.

req = [length(x) y(1:1024)];
whos x req

Name Size Bytes Class Attributes

req 1x1025 8200 double
x 1x4096 32768 double

7-48

Selected Bibliography

Selected Bibliography
[1] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice
Hall, 1988.

[2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1989.

[3] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice Hall, 1975, Section 10.5.3.

[4] Parks, T.W., and C.S. Burrus. Digital Filter Design. New York: John
Wiley & Sons, 1987.

[5] Pratt,W.K. Digital Image Processing. New York: John Wiley & Sons, 1991.

7-49

7 Special Topics

7-50

8

SPTool: A Signal Processing
GUI Suite

• “SPTool: An Interactive Signal Processing Environment” on page 8-2

• “Opening SPTool” on page 8-4

• “Getting Context-Sensitive Help” on page 8-6

• “Signal Browser” on page 8-7

• “FDATool” on page 8-10

• “Filter Visualization Tool” on page 8-12

• “Spectrum Viewer” on page 8-14

• “Filtering and Analysis of Noise” on page 8-17

• “Exporting Signals, Filters, and Spectra” on page 8-28

• “Accessing Filter Parameters” on page 8-30

• “Importing Filters and Spectra” on page 8-33

• “Loading Variables from the Disk” on page 8-37

• “Saving and Loading Sessions” on page 8-38

• “Selecting Signals, Filters, and Spectra” on page 8-40

• “Editing Signals, Filters, or Spectra” on page 8-41

• “Making Signal Measurements with Markers” on page 8-42

• “Setting Preferences” on page 8-44

• “Using the Filter Designer” on page 8-48

8 SPTool: A Signal Processing GUI Suite

SPTool: An Interactive Signal Processing Environment

In this section...

“SPTool Overview” on page 8-2

“SPTool Data Structures” on page 8-3

SPTool Overview
SPTool is an interactive GUI for digital signal processing used to

• Analyze signals

• Design filters

• Analyze (view) filters

• Filter signals

• Analyze signal spectra

You can accomplish these tasks using four GUIs that you access from within
SPTool:

• The “Signal Browser” on page 8-7 is for analyzing signals. You can also
play portions of signals using your computer’s audio hardware.

• The Chapter 5, “FDATool: A Filter Design and Analysis GUI” is available
for designing or editing FIR and IIR digital filters. Most Signal Processing
Toolbox filter design methods available at the command line are also
available in FDATool. Additionally, you can use FDATool to design a filter
by using the “Pole/Zero Editor” on page 8-49 to graphically place poles and
zeros on the z-plane.

• The “Filter Visualization Tool” on page 8-12 (FVTool) is for analyzing filter
characteristics.

• The “Spectrum Viewer” on page 8-14 is for spectral analysis. You can use
Signal Processing Toolbox spectral estimation methods to estimate the
power spectral density of a signal.

8-2

SPTool: An Interactive Signal Processing Environment

SPTool Data Structures
You can use SPTool to analyze signals, filters, or spectra that you create at
the MATLAB command line.

You can bring signals, filters, or spectra from the MATLAB workspace into the
SPTool workspace using File > Import. For more information, see “Importing
Filters and Spectra” on page 8-33. Signals, filters, or spectra that you create
in (or import into) the SPTool workspace exist as MATLAB structures. See
the MATLAB documentation for more information on MATLAB structures.

When you use File > Export to save signals, filters, and spectra that you
create or modify in SPTool, these are also saved as MATLAB structures. For
more information on exporting, see “Exporting Signals, Filters, and Spectra”
on page 8-28.

8-3

8 SPTool: A Signal Processing GUI Suite

Opening SPTool
To open SPTool, type

sptool

When you first open SPTool, it contains a collection of default signals, filters,
and spectra. To specify your own preferences for what signals, filters, and
spectra to see when SPTool opens see “Setting Preferences” on page 8-44.

You can access these three GUIs from SPTool by selecting a signal, filter, or
spectrum and clicking the appropriate View button:

• Signal Browser

• Filter Visualization Tool

• Spectrum Viewer

8-4

Opening SPTool

You can access FDATool by clicking New to create a new filter or Edit to edit
a selected filter. Clicking Apply applies a selected filter to a selected signal.

Create opens the Spectrum Viewer and creates the power spectral density
of the selected signal. Update opens the Spectrum Viewer for the selected
spectrum.

8-5

8 SPTool: A Signal Processing GUI Suite

Getting Context-Sensitive Help
To find information on a particular region of the “Signal Browser” on page
8-7, “FDATool” on page 8-10, or “Spectrum Viewer” on page 8-14:

1 Click What’s this? .

2 Click on the region of the GUI you want information on.

You can also use Help > What’s This? to launch context-sensitive help.

8-6

Signal Browser

Signal Browser

In this section...

“Overview of the Signal Browser” on page 8-7

“Opening the Signal Browser” on page 8-7

Overview of the Signal Browser
You can use the Signal Browser to display and analyze signals listed in the
Signals list box in SPTool.

Using the Signal Browser you can

• Analyze and compare vector or array (matrix) signals.

• Zoom in on portions of signal data.

• Measure a variety of characteristics of signal data.

• Compare multiple signals.

• Play portions of signal data on audio hardware.

• Print signal plots.

Opening the Signal Browser
To open the Signal Browser from SPTool:

1 Select one or more signals in the Signals list in SPTool.

2 Click View under the Signals list.

8-7

8 SPTool: A Signal Processing GUI Suite

The Signal Browser has the following components:

• A display region for analyzing signals, including markers for measuring,
comparing, or playing signals

• A “panner” that displays the entire signal length, highlighting the portion
currently active in the display region

• A marker measurements area

• A toolbar with buttons for convenient access to frequently used functions

Icon Description

Print and print preview

Play an audio signal. The function soundsc is
used to play the signal.

Display array and complex signals

Zoom the signal in and out

8-8

Signal Browser

Icon Description

Select one of several loaded signals

Set the display color and line style of a signal

Toggle the markers on and off

Set marker types (See “Making Signal
Measurements with Markers” on page 8-42)

Turn on the What’s This help

8-9

8 SPTool: A Signal Processing GUI Suite

FDATool
You can use the Filter Design and Analysis Tool (fdatool) to design and
edit filters.

To open FDATool from SPTool, click New under the Filters list to create a
new filter or select one of the filters in the Filters list in SPTool and click
Edit to edit that filter.

For details about FDATool, see Chapter 5, “FDATool: A Filter Design and
Analysis GUI”.

8-10

FDATool

Note When you open FDATool from SPTool, a reduced version of FDATool
that is compatible with SPTool opens.

8-11

8 SPTool: A Signal Processing GUI Suite

Filter Visualization Tool

In this section...

“Connection between FVTool and SPTool” on page 8-12

“Opening the Filter Visualization Tool” on page 8-12

“Analysis Parameters” on page 8-13

Connection between FVTool and SPTool
You can use the Filter Visualization Tool to analyze response characteristics
of the selected filter(s). See fvtool for detailed information about FVTool.

If you start FVTool by clicking the SPTool Filter View button, that FVTool is
linked to SPTool. Any changes made in SPTool to the filter are immediately
reflected in FVTool. The FVTool title bar includes "SPTool" to indicate the
link.

If you start an FVTool by clicking the New button or by selecting File > New
from within FVTool, that FVTool is a standalone version and is not linked to
SPTool.

Note Every time you click the Filter View button a new, linked FVTool
starts. This allows you to view multiple analyses simultaneously.

Opening the Filter Visualization Tool
You open FVTool from SPTool as follows.

1 Select one or more filters in the Filters list in SPTool.

2 Click the View button under the Filters list.

When you first open FVTool, it displays the selected filter’s magnitude plot.

8-12

Filter Visualization Tool

Analysis Parameters
In the plot area of any filter response plot, right-click and select Analysis
Parameters to display details about the displayed plot. See “Analysis
Parameters” in the FDATool online help for more information.

You can change any parameter in a linked FVTool, except the sampling
frequency. You can only change the sampling frequency using the SPTool
Edit > Sampling Frequency or the SPTool Filters Edit button.

8-13

8 SPTool: A Signal Processing GUI Suite

Spectrum Viewer

In this section...

“Spectrum Viewer Overview” on page 8-14

“Opening the Spectrum Viewer” on page 8-14

Spectrum Viewer Overview
You can use the Spectrum Viewer for estimating and analyzing a signal’s
power spectral density (PSD). You can use the PSD estimates to understand a
signal’s frequency content.

The Spectrum Viewer provides the following functionality.

• Analyze and compare spectral density plots.

• Use different spectral estimation methods to create spectra:

- Burg (pburg)

- Covariance (pcov)

- FFT (fft)

- Modified covariance (pmcov)

- MTM (multitaper method) (pmtm)

- MUSIC (pmusic)

- Welch (pwelch)

- Yule-Walker AR (pyulear)

• Modify power spectral density parameters such as FFT length, window
type, and sample frequency.

• Print spectral plots.

Opening the Spectrum Viewer
To open the Spectrum Viewer and create a PSD estimate from SPTool:

1 Select a signal from the Signal list box in SPTool.

8-14

Spectrum Viewer

2 Click Create in the Spectra list.

3 Click Apply in the Spectrum Viewer.

To open the Spectrum Viewer with a PSD estimate already listed in SPTool:

1 Select a PSD estimate from the Spectra list box in SPTool.

2 Click View in the Spectra list.

For example:

1 Select mtlb in the default Signals list in SPTool.

2 Click Create in SPTool to open the Spectrum Viewer.

3 Click Apply in the Spectrum Viewer to plot the spectrum.

The Spectrum Viewer has the following components:

• A signal identification region that provides information about the signal
whose power spectral density estimate is displayed

8-15

8 SPTool: A Signal Processing GUI Suite

• A Parameters region for modifying the PSD parameters

• A display region for analyzing spectra and an Options menu for modifying
display characteristics

• Spectrum management controls

- Inherit from menu to inherit PSD specifications from another PSD
object listed in the menu

- Revert button to revert to the named PSD’s original specifications

- Apply button for creating or updating PSD estimates

• A toolbar with buttons for convenient access to frequently used functions

Icon Description

Print and print preview

Zoom the signal in and out

Select one of several loaded signals

Set the display color and line style of a
signal

Toggle the markers on and off

Set marker types

Turn on the What’s This help

8-16

Filtering and Analysis of Noise

Filtering and Analysis of Noise

In this section...

“Overview” on page 8-17

“Importing a Signal into SPTool” on page 8-17

“Designing a Filter” on page 8-19

“Applying a Filter to a Signal” on page 8-21

“Analyzing a Signal” on page 8-23

“Spectral Analysis in the Spectrum Viewer” on page 8-25

Overview
The following sections provide an example of using the GUI-based interactive
tools to:

• Design and implement an FIR bandpass digital filter

• Apply the filter to a noisy signal

• Analyze signals and their spectra

The steps include:

1 “Importing a Signal into SPTool” on page 8-17

2 Designing a bandpass filter using FDATool

3 Applying the filter to the original noise signal to create a bandlimited
noise signal

4 Comparing the time domain information of the original and filtered signals
using the Signal Browser

5 Comparing the spectra of both signals using the Spectrum Viewer

Importing a Signal into SPTool
To import a signal into SPTool from the workspace or disk, the signal must
be either:

8-17

8 SPTool: A Signal Processing GUI Suite

• A special MATLAB signal structure, such as that saved from a previous
SPTool session

• A signal created as a variable (vector or matrix) in the MATLAB workspace

For this example, create a new signal at the command line and then import it
as a structure into SPTool:

1 Create a random signal in the MATLAB workspace by typing

randn('state',0);
x = randn(5000,1);

2 If SPTool is not already open, open SPTool by typing

sptool

The SPTool window is displayed.

3 Select File > Import. The Import to SPTool dialog opens.

The variable x is displayed in theWorkspace Contents list. (If it is not,
select the From Workspace radio button to display the contents of the
workspace.)

8-18

Filtering and Analysis of Noise

4 Select the signal and import it into the Data field:

a Select the signal variable x in theWorkspace Contents list.

b Make sure that Signal is selected in the Import As pull-down menu.

c Click on the arrow to the left of the Data field or type x in the Data field.

d Type 5000 in the Sampling Frequency field.

e Name the signal by typing noise in the Name field.

f Click OK.

The signal noise[vector] appears and is selected in SPTool’s Signals list.

Note You can import filters and spectra into SPTool in much the same way
as you import signals. See “Importing Filters and Spectra” on page 8-33 for
specific details.

You can also import signals from MAT-files on your disk, rather than from
the workspace. See “Loading Variables from the Disk” on page 8-37 for more
information.

Type help sptool for information about importing from the command line.

Designing a Filter
You can import an existing filter into SPTool, or you can design and edit
a new filter using FDATool.

In this example, you

1 Open a default filter in FDATool.

2 Specify an equiripple bandpass FIR filter.

Opening FDATool
To open FDATool, click New in SPTool. FDATool opens with a default filter
named filt1.

8-19

8 SPTool: A Signal Processing GUI Suite

Specifying the Bandpass Filter
Design an equiripple bandpass FIR filter with the following characteristics:

• Sampling frequency of 5000 Hz

• Stopband frequency ranges of [0 500] Hz and [1500 2500] Hz

• Passband frequency range of [750 1250] Hz

• Ripple in the passband of 0.01 dB

• Stopband attenuation of 75 dB

To modify the filter in FDATool to meet these specifications, you need to

1 Select Bandpass from the Response Type list.

2 Verify that FIR Equiripple is selected as the Design Method.

3 Verify that Minimum order is selected as the Filter Order and that the
Density Factor is set to 20.

4 Under Frequency Specifications, set the sampling frequency (Fs) and
the passband (Fpass1, Fpass2) and stopband (Fstop1, Fstop2) edges:

Units Hz

Fs 5000

Fstop1 500

Fpass1 750

Fpass2 1250

Fstop2 1500

5 UnderMagnitude Specifications, set the stopband attenuation (Astop1,
Astop2) and the maximum passband ripple (Apass):

8-20

Filtering and Analysis of Noise

Units dB

Astop1 75

Apass 0.01

Astop2 75

6 Click Design Filter to design the new filter. When the new filter is
designed, the magnitude response of the filter is displayed.

The resulting filter is an order-78 bandpass equiripple filter.

Applying a Filter to a Signal
When you apply a filter to a signal, you create a new signal in SPTool
representing the filtered signal.

8-21

8 SPTool: A Signal Processing GUI Suite

To apply the filter filt1 you just created to the signal noise,

1 In SPTool, select the signal noise[vector] from the Signals list and select
the filter (named filt1[design]) from the Filters list.

2 Click Apply under the Filters list.

3 Leave the Algorithm as Direct-Form FIR.

8-22

Filtering and Analysis of Noise

Note You can apply one of two filtering algorithms to FIR filters. The
default algorithm is specific to the filter structure, which is shown in the
FDATool Current Filter Info frame. Alternately for FIR filters, FFT based
FIR (fftfilt) uses the algorithm described in fftfilt.

For IIR filters, the alternate algorithm is a zero-phase IIR that uses the
algorithm described in filtfilt.

4 Enter blnoise as the Output Signal name.

5 Click OK to close the Apply Filter dialog box.

The filter is applied to the selected signal, and the filtered signal
blnoise[vector] is listed in the Signals list in SPTool.

Analyzing a Signal
You can analyze and print signals using the Signal Browser. You can also
play the signals if your computer has audio output capabilities.

For example, compare the signal noise to the filtered signal blnoise:

1 Shift+click on the noise and blnoise signals in the Signals list of SPTool
to select both signals.

2 Click View under the Signals list.

The Signal Browser is activated, and both signals are displayed in the
display region. (The names of both signals are shown above the display
region.) Initially, the original noise signal covers up the bandlimited
blnoise signal.

3 Push the selection button on the toolbar to select the blnoise signal.

The display area is updated. Now you can see the blnoise signal
superimposed on top of the noise signal. The signals are displayed in
different colors in both the display region and the panner. You can change
the color of the selected signal using the Line Properties button on the

toolbar, .

8-23

8 SPTool: A Signal Processing GUI Suite

Playing a Signal

When you click Play in the Signal Browser toolbar, , the active signal is
played on the computer’s audio hardware:

1 To hear a portion of the active (selected) signal

a Use the vertical markers to select a portion of the signal you want to

play. Vertical markers are enabled by the and buttons.

b Click Play.

2 To hear the other signal

a Select the signal as in step above. You can also select the signal directly
in the display region.

b Click Play again.

8-24

Filtering and Analysis of Noise

Printing a Signal

You can print from the Signal Browser using the Print button, .

You can use the line display buttons to maximize the visual contrast between
the signals by setting the line color for noise to gray and the line color for
blnoise to white. Do this before printing two signals together.

Note You can follow the same rules to print spectra, but you can’t print filter
responses directly from SPTool.

Use the Signal Browser region in the Preferences dialog box in SPTool to
suppress printing of both the panner and the marker settings.

To print both signals, click Print in the Signal Browser toolbar.

Spectral Analysis in the Spectrum Viewer
You can analyze the frequency content of a signal using the Spectrum Viewer,
which estimates and displays a signal’s power spectral density.

For example, to analyze and compare the spectra of noise and blnoise:

1 Create a power spectral density (PSD) object, spect1, that is associated
with the signal noise, and a second PSD object, spect2, that is associated
with the signal blnoise.

2 Open the Spectrum Viewer to analyze both of these spectra.

3 Print both spectra.

Creating a PSD Object From a Signal

1 Click on SPTool, or select Window > SPTool in any active open GUI.
SPTool is now the active window.

2 Select the noise[vector] signal in the Signals list of SPTool.

8-25

8 SPTool: A Signal Processing GUI Suite

3 Click Create in the Spectra list.

The Spectrum Viewer is activated, and a PSD (spect1) corresponding to
the noise signal is created in the Spectra list. The PSD is not computed
or displayed yet.

4 Click Apply in the Spectrum Viewer to compute and display the PSD
estimate spect1 using the default parameters.

The PSD of the noise signal is displayed in the display region. The
identifying information for the PSD’s associated signal (noise) is displayed
above the Parameters region.

The PSD estimate spect1 is within 2 or 3 dB of 0, so the noise has a fairly
"flat" power spectral density.

5 Follow steps 1 through 4 for the bandlimited noise signal blnoise to create a
second PSD estimate spect2.

The PSD estimate spect2 is flat between 750 and 1250 Hz and has 75 dB
less power in the stopband regions of filt1.

Opening the Spectrum Viewer with Two Spectra

1 Reactivate SPTool again, as in step 1 above.

2 Shift+click on spect1 and spect2 in the Spectra list to select them both.

3 Click View in the Spectra list to reactivate the Spectrum Viewer and
display both spectra together.

8-26

Filtering and Analysis of Noise

Printing the Spectra
Before printing the two spectra together, use the color and line style selection

button, , to differentiate the two plots by line style, rather than by color.

To print both spectra:

1 Click Print Preview in the toolbar on the Spectrum Viewer.

2 From the Spectrum Viewer Print Preview window, drag the legend out of
the display region so that it doesn’t obscure part of the plot.

3 Click Print in the Spectrum Viewer Print Preview window.

8-27

8 SPTool: A Signal Processing GUI Suite

Exporting Signals, Filters, and Spectra

In this section...

“Opening the Export Dialog Box” on page 8-28

“Exporting a Filter to the MATLAB Workspace” on page 8-29

Opening the Export Dialog Box
To save the filter filt1 you just created in this example, open the Export
dialog box with filt1 preselected:

1 Select filt1 in the SPTool Filters list.

2 Select File > Export.

The Export dialog box opens with filt1 preselected.

8-28

Exporting Signals, Filters, and Spectra

Exporting a Filter to the MATLAB Workspace
To export the filter filt1 to the MATLAB workspace:

1 Select filt1 from the Export List and deselect all other items using
Ctrl+click.

2 Click Export to Workspace.

8-29

8 SPTool: A Signal Processing GUI Suite

Accessing Filter Parameters

In this section...

“Accessing Filter Parameters in a Saved Filter” on page 8-30

“Accessing Parameters in a Saved Spectrum” on page 8-31

Accessing Filter Parameters in a Saved Filter
The MATLAB structures created by SPTool have several associated fields,
many of which are also MATLAB structures. See the MATLAB documentation
for general information about MATLAB structures.

For example, after exporting a filter filt1 to the MATLAB workspace, type

filt1

to display the fields of the MATLAB filter structure. The tf field of the
structure contains information that describes the filter.

The tf Field: Accessing Filter Coefficients
The tf field is a structure containing the transfer function representation of
the filter. Use this field to obtain the filter coefficients;

• filt1.tf.num contains the numerator coefficients.

• filt1.tf.den contains the denominator coefficients.

The vectors contained in these structures represent polynomials in descending
powers of z. The numerator and denominator polynomials are used to specify
the transfer function

H z
B z
A z

b b z b nb z

a a z a na

m
()

()
()

() () ()

() () (
= = + + + +

+ + +

− −

−
1 2 1

1 2

1

1

 ++ −1)z n

where:

• b is a vector containing the coefficients from the tf.num field.

8-30

Accessing Filter Parameters

• a is a vector containing the coefficients from the tf.den field.

• m is the numerator order.

• n is the denominator order.

You can change the filter representation from the default transfer function to
another form by using the tf2ss or tf2zp functions.

Note The FDAspecs field of your filter contains internal information about
FDATool and should not be changed.

Accessing Parameters in a Saved Spectrum
The following structure fields describe the spectra saved by SPTool.

Field Description

P The spectral power vector.

f The spectral frequency vector.

confid A structure containing the confidence intervals data

• The confid.level field contains the chosen
confidence level.

• The confid.Pc field contains the spectral power
data for the confidence intervals.

• The confid.enable field contains a 1 if confidence
levels are enabled for the power spectral density.

signalLabel The name of the signal from which the power
spectral density was generated.

Fs The associated signal’s sample rate.

You can access the information in these fields as you do with every MATLAB
structure.

For example, if you export an SPTool PSD estimate spect1 to the workspace,
type

8-31

8 SPTool: A Signal Processing GUI Suite

spect1.P

to obtain the vector of associated power values.

8-32

Importing Filters and Spectra

Importing Filters and Spectra

In this section...

“Similarities to Other Procedures” on page 8-33

“Importing Filters” on page 8-33

“Importing Spectra” on page 8-35

Similarities to Other Procedures
The procedures are very similar to those explained in

• “Importing a Signal into SPTool” on page 8-17 for loading variables from
the workspace

• “Loading Variables from the Disk” on page 8-37 for loading variables from
your disk

Importing Filters
When you import filters, first select the appropriate filter form from the Form
list. SPTool does not currently support the import of filter objects.

8-33

8 SPTool: A Signal Processing GUI Suite

For every filter you specify a variable name or a value for the filter’s sampling
frequency in the Sampling Frequency field. Each filter form requires
different variables.

Transfer Function
For Transfer Function, you specify the filter by its transfer function
representation:

H z
B z
A z

b b z b m z

a a z a n

m
()

()
()

() () ()

() () (
= = + + + +

+ + + +

− −

−
1 2 1

1 2 1

1

1

))z n−

• The Numerator field specifies a variable name or value for the numerator
coefficient vector b, which contains m+1 coefficients in descending powers
of z.

• The Denominator field specifies a variable name or value for the
denominator coefficient vector a, which contains n+1 coefficients in
descending powers of z.

State Space
For State Space, you specify the filter by its state-space representation:

x Ax Bu
y Cx Du

= +
= +

The A-Matrix, B-Matrix, C-Matrix, and D-Matrix fields specify a variable
name or a value for each matrix in this system.

Zeros, Poles, Gain
For Zeros, Poles, Gain, you specify the filter by its zero-pole-gain
representation:

H z
Z z
P z

k
z z z z z z m
z p z p

()
()
()

(())(()) (())
(())(()) (

= = − − −
− −

1 2
1 2

 zz p n− ())

8-34

Importing Filters and Spectra

• The Zeros field specifies a variable name or value for the zeros vector z,
which contains the locations of m zeros.

• The Poles field specifies a variable name or value for the zeros vector p,
which contains the locations of n poles.

• The Gain field specifies a variable name or value for the gain k.

Second Order Sections
For 2nd Order Sections you specify the filter by its second-order section
representation:

H z H z
b b z b z

a z a z
k

k k k

k kk

L

k

L
() ()= =

+ +
+ +

− −

− −
==

∏∏ 0 1
1

2
2

1
1

2
2

11 1

The SOS Matrix field specifies a variable name or a value for the L-by-6
SOS matrix

sos

b b b a a
b b b a a

b b b a aL L L L L

=

01 11 21 11 21

02 12 22 12 22

0 1 2 1 2

1
1

1

⎡⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

whose rows contain the numerator and denominator coefficients bik and aik
of the second-order sections of H(z).

Note If you import a filter that was not created in SPTool, you can only edit
that filter using the Pole/Zero Editor.

Importing Spectra
When you import a power spectral density (PSD), you specify:

• A variable name or a value for the PSD vector in the PSD field

• A variable name or a value for the frequency vector in the Freq. Vector
field

8-35

8 SPTool: A Signal Processing GUI Suite

The PSD values in the PSD vector correspond to the frequencies contained in
the Freq. Vector vector; the two vectors must have the same length.

8-36

Loading Variables from the Disk

Loading Variables from the Disk
To import variables representing signals, filters, or spectra from a MAT-file
on your disk;

1 Select the From Disk radio button and do either of the following:

• Type the name of the file you want to import into the MAT-file Name
field and press either the Tab or the Enter key on your keyboard.

• Select Browse, and then find and select the file you want to import
using Select > File to Open. Click OK to close that dialog.

In either case, all variables in the MAT-file you selected are displayed
in the File Contents list.

2 Select the variables to be imported into SPTool.

You can now import one or more variables from the File Contents list into
SPTool, as long as these variables are scalars, vectors, or matrices.

8-37

8 SPTool: A Signal Processing GUI Suite

Saving and Loading Sessions

In this section...

“SPTool Sessions” on page 8-38

“Filter Formats” on page 8-38

SPTool Sessions
When you start SPTool, the default startup.spt session is loaded. To save
your work in the startup SPTool session, use File > Save Session or to
specify a session name, use File > Save Session As.

To recall a previously saved session, use File > Open Session.

Filter Formats
When you start SPTool or open a session, the current filter design format
preference is compared to the filter formats in the session. See “Setting
Preferences” on page 8-44.

• If the formats match, the session opens.

• If the filter preference is FDATool, but the session contains Filter Designer
filters, this warning displays:

8-38

Saving and Loading Sessions

Click Convert to convert the filters to FDATool format. Click Don’t Use
FDATool to leave the filters in Filter Designer format and change the
preference to Use Filter Designer.

• If the filter preference is Use Filter Designer, but the session contains
FDATool filters, this warning displays:

Click Yes to remove the current filters. Click No to leave the filters in
FDATool.

8-39

8 SPTool: A Signal Processing GUI Suite

Selecting Signals, Filters, and Spectra
All signals, filters, or spectra listed in SPTool exist as special MATLAB
structures. You can bring data representing signals, filters, or spectra into
SPTool from the MATLAB workspace. In general, you can select one or
several items in a given list box. An item is selected when it is highlighted.

The Signals list shows all vector and array signals in the current SPTool
session.

The Filters list shows all designed and imported filters in the current SPTool
session.

The Spectra list shows all spectra in the current SPTool session.

You can select a single data object in a list, a range of data objects in a list,
or multiple separate data objects in a list. You can also have data objects
simultaneously selected in different lists:

• To select a single item, click it. All other items in that list box become
deselected.

• To add or remove a range of items, Shift+click on the items at the top and
bottom of the section of the list that you want to add. You can also drag
your mouse pointer to select these items.

• To add a single data object to a selection or remove a single data object
from a multiple selection, Ctrl+click on the object.

8-40

Editing Signals, Filters, or Spectra

Editing Signals, Filters, or Spectra
You can edit selected items in SPTool by

1 Selecting the names of the signals, filters, or spectra you want to edit.

2 Selecting the appropriate Edit menu item:

• Duplicate to copy an item in an SPTool list

• Clear to delete an item in an SPTool list

• Name to rename an item in an SPTool list

• Sampling Frequency to modify the sampling frequency associated
with either a signal (and its associated spectra) or filter in an SPTool list

The pull-down menu next to each menu item shows the names of all
selected items.

You can also edit the following signal characteristics by right-clicking in the
display region of the Signal Browser, the Filter Visualization Tool, or the
Spectrum Viewer:

• The signal name

• The sampling frequency

• The line style properties

Note If you modify the sampling frequency associated with a signal’s
spectrum using the right-click menu on the Spectrum Viewer display region,
the sampling frequency of the associated signal is automatically updated.

8-41

8 SPTool: A Signal Processing GUI Suite

Making Signal Measurements with Markers
You can use the markers on the Signal Browser or the Spectrum Viewer to
make measurements on either of the following:

• A signal in the Signal Browser

• A power spectral density plotted in the Spectrum Viewer

The following marker buttons are included

Icon Description

Toggle markers on/off

Vertical markers

Horizontal markers

Vertical markers with tracking

Vertical markers with tracking and slope

Display peaks (local maxima)

You can find peaks in a signal from the command line
with findpeaks

Display valleys (local minima)

To make a measurement:

1 Select a line to measure (or play, if you are in the Signal Browser).

2 Select one of the marker buttons to apply a marker to the displayed signal.

8-42

Making Signal Measurements with Markers

3 Position a marker in the main display area by grabbing it with your mouse
and dragging:

a Select a marker setting. If you choose the Vertical, Track, or Slope
buttons, you can drag a marker to the right or left. If you choose the
Horizontal button, you can drag a marker up or down.

b Move the mouse over the marker (1 or 2) that you want to drag.

The hand cursor with the marker number inside it is displayed when
your mouse passes over a marker.

c Drag the marker to where you want it on the signal

As you drag a marker, the bottom of the Signal Browser shows the current
position of both markers. Depending on which marker setting you select,
some or all of the following fields are displayed — x1, y1, x2, y2, dx, dy,
m. These fields are also displayed when you print from the Signal Browser,
unless you suppress them.

You can also position a marker by typing its x1 and x2 or y1 and y2 values
in the region at the bottom.

8-43

8 SPTool: A Signal Processing GUI Suite

Setting Preferences

In this section...

“Overview of Setting Preferences” on page 8-44

“Summary of Settable Preferences” on page 8-45

“Setting the Filter Design Tool” on page 8-46

Overview of Setting Preferences
Use File > Preferences to customize displays and certain parameters for
SPTool and its four component GUIs. If you change any preferences, a dialog
box displays when you close SPTool asking if you want to save those changes.
If you click Yes, the new settings are saved on disk and are used when you
restart SPTool from the MATLAB workspace.

Note You can set MATLAB preferences that affect the Filter Visualization
Tool only from within FVTool by selecting File > Preferences. You can set
FVTool-specific preferences using Analysis > Analysis Parameters.

8-44

Setting Preferences

When you first select Preferences, the Preferences dialog box opens with
Markers selected by default.

Change any marker settings, if desired. To change settings for another
category, click its name in the category list to display its settings. Most
of the fields are self-explanatory. Details of the Filter Design options are
described below.

Summary of Settable Preferences
In the Preferences regions, you can

• Select colors and markers for all displays.

• Select colors and line styles for displayed signals.

• Configure labels, and enable/disable markers, panner, and zoom in the
Signal Browser.

• Configure display parameters, and enable/disable markers and zoom in
the Spectrum Viewer.

• Select whether to use the default FDATool or the Filter Designer to design
filters. FDATool is the recommended designer.

• Enable/disable use of a default session file.

8-45

8 SPTool: A Signal Processing GUI Suite

• Export filters for use with Control System Toolbox software.

• Enable/disable search for plug-ins at startup.

Setting the Filter Design Tool
The Filter Designer options include radio buttons to select the filter design
tool.

FDATool is the default and recommended tool. You can use Filter Designer,
but Filter Designer will be removed in a future release. You cannot change
this preference if either FDATool or the Filter Designer is open.

Note Filters in any one SPTool session must be in the same format — either
FDATool format or Filter Designer format. You can convert filters from the
Filter Designer format to FDATool format, but you cannot convert FDATool
filters to Filter Designer format.

If you change the preference from Use FDATool to Use Filter Designer,
a warning message appears. The warning message informs you that filters
created with FDATool are not compatible with Filter Designer and that Filter
Designer will be removed in the future.

8-46

Setting Preferences

See “Saving and Loading Sessions” on page 8-38 for more information.

When you change the preference from Use Filter Designer toUse FDATool,
a confirmation message appears indicating that switching will convert your
filters to FDATool format. See “Saving and Loading Sessions” on page 8-38
for information on this message.

Changes to Filter Designer format are saved only if you save the session.
Exiting the session prompts you to save changes to the sigprefs.mat and
startup.spt files. Starting SPTool with Filter Designer specified as the filter
design tool results in the warning:

The warning appears each time SPTool initializes unless you opt to not show
the warning.

8-47

8 SPTool: A Signal Processing GUI Suite

Using the Filter Designer

In this section...

“Filter Designer” on page 8-48

“Filter Types” on page 8-48

“FIR Filter Methods” on page 8-49

“IIR Filter Methods” on page 8-49

“Pole/Zero Editor” on page 8-49

“Spectral Overlay Feature” on page 8-49

“Opening the Filter Designer” on page 8-49

“Accessing Filter Parameters in a Saved Filter” on page 8-51

“Designing a Filter with the Pole/Zero Editor” on page 8-54

“Positioning Poles and Zeros” on page 8-55

“Redesigning a Filter Using the Magnitude Plot” on page 8-57

Filter Designer
“FDATool” on page 8-10 is the recommended filter design tool. Filter Designer
will be removed in a future release. The following information is provided for
users that choose to use Filter Designer while they transition to FDATool.
Filter Designer, provides an interactive graphical environment for the design
of digital IIR and FIR filters based on specifications that you enter on a
magnitude or pole-zero plot.

Filter Types
You can design filters of the following types using the Filter Designer:

• Bandpass

• Lowpass

• Bandstop

• Highpass

8-48

Using the Filter Designer

FIR Filter Methods
You can use the following filter methods to design FIR filters:

• Equiripple

• Least squares

• Window

IIR Filter Methods
You can use the following filter methods to design IIR filters:

• Butterworth

• Chebyshev Type I

• Chebyshev Type II

• Elliptic

Pole/Zero Editor
You can use the Pole/Zero Editor to design arbitrary FIR and IIR filters by
placing and moving poles and zeros on the complex z-plane.

Spectral Overlay Feature
You can also superimpose spectra on a filter’s magnitude response to see if
the filtering requirements are met.

Opening the Filter Designer
Open the Filter Designer from SPTool by either:

• Clicking New in the Filters list in SPTool

• Selecting a filter you want to edit from the Filters list in SPTool, and
then clicking Edit

8-49

8 SPTool: A Signal Processing GUI Suite

The Filter Designer has the following components:

• A pull-down Filter menu for selecting a filter from the list in SPTool

• A Sampling Frequency text box

• A pull-down Algorithm menu for selecting a filter design method or a
pole-zero plot display

• A Specifications area for viewing or modifying a filter’s design parameters
or pole-zero locations

• A plot display region for graphically adjusting filter magnitude responses
or the pole-zero locations

• A Measurements area for viewing the response characteristics and stability
of the current filter

• A toolbar with the following buttons

8-50

Using the Filter Designer

Icon Description

Print and print preview

Zoom in and out

Passband view

Overlay spectrum

Turn on the What’s This help

Accessing Filter Parameters in a Saved Filter
The MATLAB structures created by SPTool have several associated fields,
many of which are also MATLAB structures. See the MATLAB documentation
for general information about MATLAB structures.

For example, after exporting a filter filt1 to the MATLAB workspace, type

filt1

to display the fields of the MATLAB filter structure. The tf, Fs, and specs
fields of the structure contain the information that describes the filter.

The tf Field: Accessing Filter Coefficients
The tf field is a structure containing the transfer function representation of
the filter. Use this field to obtain the filter coefficients;

• filt1.tf.num contains the numerator coefficients.

• filt1.tf.den contains the denominator coefficients.

The vectors contained in these structures represent polynomials in descending
powers of z. The numerator and denominator polynomials are used to specify
the transfer function

8-51

8 SPTool: A Signal Processing GUI Suite

H z
B z
A z

b b z b nb z

a a z a na

m
()

()
()

() () ()

() () (
= = + + + +

+ + +

− −

−
1 2 1

1 2

1

1

 ++ −1)z n

where:

• b is a vector containing the coefficients from the tf.num field.

• a is a vector containing the coefficients from the tf.den field.

• m is the numerator order.

• n is the denominator order.

You can change the filter representation from the default transfer function to
another form by using the tf2ss or tf2zp functions.

The Fs Field: Accessing Filter Sample Frequency
The Fs field contains the sampling frequency of the filter in hertz.

The specs Field: Accessing other Filter Parameters
The specs field is a structure containing parameters that you specified
for the filter design. The first field, specs.currentModule, contains a
string representing the most recent design method selected from the Filter
Designer’s Algorithm list before you exported the filter. The possible
contents of the currentModule field and the corresponding design methods
are shown below.

Contents of the currentModule
field Design Method

fdbutter Butterworth IIR

fdcheby1 Chebyshev Type I IIR

fdcheby2 Chebyshev Type II IIR

fdellip Elliptic IIR

fdfirls Least Squares FIR

fdkaiser Kaiser Window FIR

fdremez Equiripple FIR

8-52

Using the Filter Designer

Following the specs.currentModule field, there may be up to seven
additional fields, with labels such as specs.fdremez, specs.fdfirls, etc.
The design specifications for the most recently exported filter are contained
in the field whose label matches the currentModule string. For example, if
the specs structure is

filt1.specs

ans
currentModule: 'fdremez'
fdremez: [1x1 struct]

the filter specifications are contained in the fdremez field, which is itself
a data structure.

The specifications include the parameter values from the Specifications region
of the Filter Designer, such as band edges and filter order. For example, the
filter above has the following specifications stored in filt1.specs.fdremez:

filt1.specs.fdremez

ans =
setOrderFlag: 0

type: 3
f: [0 0.2000 0.3000 0.5000 0.6000 1]
m: [6x1 double]

Rp: 0.0100
Rs: 75
wt: [3.2371 1 3.2371]

order: 78

Because certain filter parameters are unique to a particular design, this
structure has a different set of fields for each filter design.

The table below describes the possible fields associated with the filter design
specification field (the specs field) that can appear in the exported structure.

8-53

8 SPTool: A Signal Processing GUI Suite

Parameter Description

Beta Kaiser window β parameter.

f Contains a vector of band-edge frequencies, normalized
so that 1 Hz corresponds to half the sample frequency.

Fpass Passband cutoff frequencies. Scalar for lowpass and
highpass designs, two-element vector for bandpass and
bandstop designs.

Fstop Stopband cutoff frequencies. Scalar for lowpass and
highpass designs, two-element vector for bandpass and
bandstop designs.

m The response magnitudes corresponding to the band-edge
frequencies in f.

order Filter order.

Rp Passband ripple (dB)

Rs Stopband attenuation (dB)

setOrderFlag Contains 1 if the filter order was specified manually (i.e.,
the Minimum Order box in the Specifications region
was not selected). Contains 0 if the filter order was
computed automatically.

type Contains 1 for lowpass, 2 for highpass, 3 for bandpass, or
4 for bandstop.

w3db -3 dB frequency for Butterworth IIR designs.

wind Vector of Kaiser window coefficients.

Wn Cutoff frequency for the Kaiser window FIR filter when
setOrderFlag = 1.

wt Vector of weights, one weight per frequency band.

Designing a Filter with the Pole/Zero Editor
To design a filter transfer function using the Filter Designer Pole/Zero Editor:

1 Select the Pole/Zero Editor option from the Algorithm list to open the
Pole/Zero Editor in the Filter Designer display.

8-54

Using the Filter Designer

2 Enter the desired filter gain in the Gain edit box.

3 Select a pole or zero (or conjugate pair) by selecting one of the (pole) or
(zero) symbols on the plot.

4 Choose the coordinates to work in by specifying Polar or Rectangular
from the Coordinates list.

5 Specify the new location(s) of the selected pole, zero, or conjugate pair by
typing values into theMag and Angle fields (for angular coordinates) or X
and Y (for rectangular coordinates) fields. Alternatively, position the poles
and zeros by dragging the and symbols.

6 Use the Conjugate pair check box to create a conjugate pair from a lone
pole or zero, or to break a conjugate pair into two individual poles or zeros.

Design a new filter or edit an existing filter in the same way.

Note Keep the Filter Visualization Tool (FVTool) open while designing a
filter with the Pole/Zero Editor. Any changes that you make to the filter
transfer function in the Pole/Zero Editor are then simultaneously reflected in
the response plots of FVTool.

Positioning Poles and Zeros
You can use your mouse to move poles and zeros around the pole/zero plot
and modify your filter design.

Icon Description

Enable moving poles or zeros by dragging on the plot

Add pole

8-55

8 SPTool: A Signal Processing GUI Suite

Icon Description

Add zero

Erase poles or zeros

You can move both members of a conjugate pair simultaneously by
manipulating just one of the poles or zeros.

To ungroup conjugates, select the desired pair and clear Conjugate pair in
the Specifications region on the Filter Designer.

When you place two or more poles (or two or more zeros) directly on top of each
other, a number is displayed next to the symbols (on the left for poles, and on
the right for zeros) indicating the number of poles or zeros at that location
(e.g., for three zeros). This number makes it easy to keep track of all the

8-56

Using the Filter Designer

poles and zeros in the plot area, even when several are superimposed on each
other and are not visually differentiable. Note, however, that this number
does not indicate the multiplicity of the poles or zeros to which it is attached.

To detect whether or not a set of poles or zeros are truly multiples, use the
zoom tools to magnify the region around the poles or zeros in question.
Because numerical limitations usually prevent any set of poles or zeros from
sharing exactly the same value, at a high enough zoom level even truly
multiple poles or zeros appear distinct from each other.

A common way to assess whether a particular group of poles or zeros contains
multiples is by comparing the mutual proximity of the group members against
a selected threshold value. As an example, the residuez function defines a
pole or zero as being a multiple of another pole or zero if the absolute distance
separating them is less than 0.1% of the larger pole or zero’s magnitude.

Redesigning a Filter Using the Magnitude Plot
After designing a filter in the Filter Designer, you can redesign it by dragging
the specification lines on the magnitude plot. Use the specification lines to
change passband ripple, stopband attenuation, and edge frequencies.

In the following example, create a Chebyshev filter and modify it by dragging
the specification lines:

1 Select Chebyshev Type I IIR from the Algorithm menu.

2 Select highpass from the Type menu.

3 Type 2000 in the Sampling Frequency field.

4 Set the following parameters:

• Fp = 800

• Fs = 700

• Rp = 2.5

• Rs = 35

5 Select Minimum Order so the Filter Designer can calculate the lowest
filter order that produces the desired characteristics.

8-57

8 SPTool: A Signal Processing GUI Suite

6 Click Apply to compute the filter and update the response plot.

7 Position the cursor over the horizontal filter specification line for the
stopband. This is the first (leftmost) horizontal specification line you see.

The cursor changes to the up/down drag indicator.

8 Drag the line until the Rs (stopband attenuation) field reads 100.

Note The Order value in the Measurements region changes because a
higher filter order is needed to meet the new specifications.

8-58

9

Code Generation from
MATLAB Support in Signal
Processing Toolbox

• “Supported Functions” on page 9-2

• “Specifying Inputs in Code Generation from MATLAB ” on page 9-7

• “Code Generation Examples” on page 9-11

9 Code Generation from MATLAB® Support in Signal Processing Toolbox™

Supported Functions
Code generation from MATLAB is a restricted subset of the MATLAB
language that provides optimizations for:

• Generating efficient, production-quality C/C++ code and MEX files for
deployment in desktop and embedded applications. For embedded targets,
the subset restricts MATLAB semantics to meet the memory and data type
requirements of the target environments.

For detailed information about code generation from MATLAB, refer to the
“Code Generation from MATLAB” and “MATLAB Coder” documentation.
Depending on which feature you wish to use, there are additional required
products. For a comprehensive list, see “Which Code Generation Feature
to Use”.

Code generation from MATLAB supports Signal Processing Toolbox functions
listed in the table. You must have the DSP System Toolbox software installed
to use this feature. To generate C code, you must have the MATLAB®

Coder™ software. If you have the Fixed-Point Toolbox, you can use fiaccel
to generate MEX code for fixed-point applications.

To follow the examples in this documentation:

• To generate C/C++ code and MEX files with codegen, install the MATLAB
Coder software, the Signal Processing Toolbox, the DSP System Toolbox,
and a C compiler. For the Windows® platform, MATLAB supplies a default
C compiler. Run mex -setup at the MATLAB command prompt to set up
the C compiler.

• Change to a folder where you have write permission.

Note Many Signal Processing Toolbox functions require constant inputs in
generated code. To specify a constant input for codegen, use coder.Constant.
For more information, see the “MATLAB Coder” documentation.

9-2

Supported Functions

Function Remarks/Limitations

barthannwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bartlett Window length must be a constant. Expressions or variables are
allowed if their values do not change.

besselap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

bitrevorder —

blackman Window length must be a constant. Expressions or variables are
allowed if their values do not change.

blackmanharris Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bohmanwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

buttap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

butter Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

buttord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cfirpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb2ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb2ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

chebwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

9-3

9 Code Generation from MATLAB® Support in Signal Processing Toolbox™

Function Remarks/Limitations

cheby1 All Inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

dct Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

downsample —

dpss All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellip Inputs must be constant. Expressions or variables are allowed if their
values do not change.

ellipap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellipord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

filtfilt Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

fir1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fir2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

9-4

Supported Functions

Function Remarks/Limitations

firpmord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firrcos All inputs must be constants. Expressions or variables are allowed if
their values do not change.

flattopwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

freqz freqz with no output arguments produces a plot only when the function
call terminates in a semicolon. See “freqzWith No Output Arguments”
on page 9-15.

gaussfir All inputs must be constant. Expressions or variables are allowed if
their values do not change.

gausswin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hamming All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hann All inputs must be constant. Expressions or variables are allowed if
their values do not change.

idct Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

intfilt All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiser All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiserord —

levinson If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

maxflat All inputs must be constant. Expressions or variables are allowed if
their values do not change.

nuttallwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

9-5

9 Code Generation from MATLAB® Support in Signal Processing Toolbox™

Function Remarks/Limitations

parzenwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

rectwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

resample The upsampling and downsampling factors must be specified as
constants. Expressions or variables are allowed if their values do not
change.

sgolay All inputs must be constant. Expressions or variables are allowed if
their values do not change.

sosfilt —

taylorwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

triang All inputs must be constant. Expressions or variables are allowed if
their values do not change.

tukeywin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

upfirdn • Filter coefficients, upsampling factor, and downsampling factor must
be constants. Expressions or variables are allowed if their values
do not change.

• Variable-size inputs are not supported.

upsample Either declare input n as constant, or use the assert function in the
calling function to set upper bounds for n. For example,

assert(n<10)

xcorr —

yulewalk If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

9-6

Specifying Inputs in Code Generation from MATLAB®

Specifying Inputs in Code Generation from MATLAB

In this section...

“Defining Input Size and Type” on page 9-7

“Inputs must be Constants” on page 9-8

Defining Input Size and Type
When you use Signal Processing Toolbox functions for code generation, you
must define the size and type of the function inputs. One way to do this is with
the -args compilation option. The size and type of inputs must be defined
because C is a statically typed language. See “Defining MATLAB Variables
for C/C++ Code Generation” in the “Code Generation from MATLAB”
documentation for details. To illustrate the need to define input size and
type, consider the simplest call to xcorr requiring two input arguments. The
following demonstrates the differences in the use of xcorr in MATLAB and
in Code Generation from MATLAB.

Cross correlate two white noise vectors in MATLAB:

x = randn(512,1); %real valued white noise
y = randn(512,1); %real valued white noise
[C,lags] = xcorr(x,y);
x_circ = randn(256,1)+1j*randn(256,1); %circular white noise
y_circ = randn(256,1)+1j*randn(256,1); %circular white noise
[C1,lags1] = xcorr(x_circ,y_circ);

xcorr does not require any information about the size and type of the
input arguments. xcorr obtains this information at runtime. Contrast this
behavior with a MEX-file created with codegen. Create the file myxcorr.m in
a folder where you have read and write permission. Ensure that this folder
is in the MATLAB search path. Copy and paste the following two lines of
code into myxcorr.m and save the file. The compiler tag %#codegen must
be included in the file.

function [C,Lags]=myxcorr(x,y) %#codegen
[C,Lags]=xcorr(x,y);

Enter the following command at the MATLAB command prompt:

9-7

9 Code Generation from MATLAB® Support in Signal Processing Toolbox™

codegen myxcorr -args {zeros(512,1),zeros(512,1)} -o myxcorr

Run the MEX-file:

x = randn(512,1); %real valued white noise
y = randn(512,1); %real valued white noise
[C,Lags] = myxcorr(x,y);

Define two new inputs x1 and y1 by transposing x and y.

x1 = x'; %x1 is 1x512
y1 = y'; %y1 is 1x512

Attempt to rerun the MEX-file with the tranposed inputs.

[C,Lags] = myxcorr(x1,y1); %Errors

The preceding program errors with the message ??? MATLAB expression
'x' is not of the correct size: expected [512x1] found [1x512]..

The error results because the inputs are specified to be 512x1 real-valued
column vectors at compilation. For complex-valued inputs, you must specify
that the input is complex valued. For example:

codegen myxcorr -o ComplexXcorr ...
-args {complex(zeros(512,1)),complex(zeros(512,1))}

Run the MEX-file at the MATLAB command prompt with complex-valued
inputs of the correct size:

x_circ = randn(512,1)+1j*randn(512,1); %circular white noise
y_circ = randn(512,1)+1j*randn(512,1); %circular white noise
[C,Lags] = ComplexXcorr(x_circ,y_circ);

Attempting to run ComplexXcorr with real valued inputs results in the error:
??? MATLAB expression 'x' is not of the correct complexness.

Inputs must be Constants
For a number of supported Signal Processing Toolbox functions, the inputs
or a subset of the inputs must be specified as constants at compilation
time. Functions with this behavior are noted in the right column of the

9-8

Specifying Inputs in Code Generation from MATLAB®

table “Supported Functions” on page 9-2. Use coder.Type with the -args
compilation option, or enter the constants directly in the source code. For a
detailed explanation see the “MATLAB Coder” documentation.

Specifying inputs as constants at compilation time results in significant
advantages in the speed and efficiency of the generated code. For example,
storing filter coefficients or window function values as vectors in the C source
code improves performance by avoiding costly computation at runtime.
Because a primary purpose of Code Generation from MATLAB is to generate
optimized C code for desktop and embedded systems, emphasis is placed on
providing the user with computational savings at runtime whenever possible.

To illustrate the constant input requirement with butter, create the file
myLowpassFilter.m in a folder where you have read and write permission.
Ensure that this folder is in the MATLAB search path. Copy and paste the
following lines of code into myLowpassFilter.m and save the file.

function output = myLowpassFilter(input,N,Wn) %#codegen
[B,A] = butter(N,Wn,'low');
output = filter(B,A,input);

If you have the MATLAB Coder software, enter the following command at the
MATLAB command prompt:

codegen myLowpassFilter -o myLowpassFilter ...
-args {zeros(512,1), coder.newtype('constant',5),coder.newtype('constant

Once the program compiles successfully, the following message appears in the
command window: Code generation successful: View report.

Click on View report. Click on the C code tab on the top left and open the
target source file myLowpassFilter.c.

Note that the numerator and denominator filter coefficients are included in
the source code.

static real_T dv0[6] = { 5.9795780369978346E-5, 0.00029897890184989173
static real_T dv1[6] = { 1.0, -3.9845431196123373, 6.4348670902758709,

Run the MEX-file without entering the constants:

9-9

9 Code Generation from MATLAB® Support in Signal Processing Toolbox™

output = myLowpassFilter(randn(512,1));

If you attempt to run the MEX-file by inputting the constants, you receive
the error ??? Error using ==> myLowpassFilter 1 input required for
entry-point 'myLowpassFilter'..

You may also enter the constants in the MATLAB source code directly. Edit
the myLowPassFilter.m file and replace the MATLAB code with the lines:

function output = myLowpassFilter(input) %#codegen
[B,A] = butter(5,0.1,'low');
output = filter(B,A,input);

Enter the following command at the MATLAB command prompt:

codegen myLowpassFilter -args {zeros(512,1)} -o myLowpassFilter

Run the MEX-file by entering the following at the MATLAB command prompt:

output = myLowpassFilter(randn(512,1));

See “Apply Window to Input Signal” on page 9-11 ,“Apply Lowpass Filter
to Input Signal” on page 9-13, and “Zero Phase Filtering” on page 9-16 for
additional examples of the constant input requirement.

9-10

Code Generation Examples

Code Generation Examples

In this section...

“Apply Window to Input Signal” on page 9-11

“Apply Lowpass Filter to Input Signal” on page 9-13

“Cross Correlate or Autocorrelate Input Data” on page 9-14

“freqz With No Output Arguments” on page 9-15

“Zero Phase Filtering” on page 9-16

Apply Window to Input Signal
In this example, apply a Hamming window to an input data vector of size
512x1.

Create a file called window_data.m by typing

>>edit window_data

at the MATLAB command prompt.

Copy and paste the code provided into the editor and save the file.

function output_data=window_data(input_data,N) %#codegen
Win=hamming(N);
output_data=input_data.*Win;

Use codegen to generate a MEX–file window_data.m.

codegen window_data -args {zeros(512,1),coder.newtype('constant',512)} -o

The -args option defines the input specifications for the MEX –file.
input_data is a 512x1 real valued vector. Because the input to hamming
must be a constant, coder.newtype is used to specify the window length. In
a conventional MATLAB program, you can read the input data length at
runtime and construct a Hamming window of the corresponding length.

Alternatively, edit the code for window_data.m as follows:

9-11

9 Code Generation from MATLAB® Support in Signal Processing Toolbox™

function output_data=window_data(input_data) %#codegen
Win=hamming(512);
output_data=input_data.*Win;

The preceding code specifies the length of the Hamming window in the
source code as opposed to using coder.newtype. Use codegen to generate a
MEX–file and C code:

codegen window_data -args {zeros(512,1)} -o window_data -report

The -report flag generates a compilation report. If the codegen operation is
successful, you obtain: Code generation successful: View report.

Click on View report to view the Code Generation Report.

Select the C-code tab and select window_data.c as the Target Source File.

Note from the location bar that the C source code is in the
codegen/mex/<FUNCTION_NAME> folder. Running codegen creates this folder

9-12

Code Generation Examples

and places the C source code, C header files, and MEX files in the folder. Each
function that you create produces a codegen/mex/<FUNCTION_NAME> folder.

Scroll through the C code to see that the values of the Hamming window are
included directly in the C source code.

Run the MEX-file on a white noise input:

% Window white noise input
output_data=window_data(randn(512,1));

Apply Lowpass Filter to Input Signal
Assuming a sampling frequency of 20 kHz, create a 4–th order Butterworth
filter with a 3–dB frequency of 2.5 kHz. Use the Butterworth filter to lowpass
filter a 10000x1 input data vector.

Create a file called ButterFilt.m. Copy and paste the following code into
the file.

function output_data=ButterFilt(input_data) %#codegen
[b,a]=butter(4,0.25);
output_data=filter(b,a,input_data);

Run the codegen command to obtain the C source code ButterFilt.c and
MEX file:

codegen ButterFilt -args {zeros(10000,1)} -o ButterFilt -report

The C source code includes the five numerator and denominator coefficients
of the 4–th order Butterworth filter as constants.

static real_T dv0[5] = { 0.010209480791203124, 0.040837923164812495, 0.06
static real_T dv1[5] = { 1.0, -1.9684277869385174, 1.7358607092088851, -0

Apply the filter using the MEX-file:

Fs=20000;
%Create 10000x1 input signal
t=0:(1/Fs):0.5-(1/Fs);
input_data=(cos(2*pi*1000*t)+sin(2*pi*500*t)+0.2*randn(size(t)))';
%Filter data

9-13

9 Code Generation from MATLAB® Support in Signal Processing Toolbox™

output_data=ButterFilt(input_data);

Cross Correlate or Autocorrelate Input Data
Estimate the cross correlation or autocorrelation of two real-valued input
vectors to lag 50. Output the estimate at the nonnegative lags.

Create a file called myxcorr.m. Copy and paste the following code into the file:

function [C,Lags]=myxcorr(x,y) %#codegen
[c,lags]=xcorr(x,y,50,'coeff');
C=c(51:end);
Lags=lags(51:end);

Run the codegen command at the MATLAB command prompt:

codegen myxcorr -args {zeros(512,1), zeros(512,1)} -o myxcorr -report

Use the MEX-file to compute and plot the autocorrelation of a white noise
input:

rng(0,'twister')
%White noise input
input_data=randn(512,1);
%Compute autocorrelation with MEX-file
[C,Lags]=myxcorr(input_data,input_data);
% Plot the result
stem(Lags,C); axis([-0.5 51 -1.1 1.1])
xlabel('Lags'); ylabel('Autocorrelation Function');

9-14

Code Generation Examples

freqz With No Output Arguments
In Code Generation from MATLAB, freqz with no output arguments behaves
differently than in the standard MATLAB language. In standard MATLAB,
freqz with no output arguments produces a plot of the magnitude and phase
response of the input filter. The plot is produced regardless of whether the
call to freqz terminates in a semicolon or not. No frequency response or
phase vectors are returned.

freqz with no output arguments and no terminating semicolon:

B = [0.05 0.9 0.05]; %Numerator coefficients
freqz(B,1) %no semicolon. Plot is produced

freqz with no output arguments and terminating in a semicolon:

B = [0.05 0.9 0.05]; %Numerator coefficients
freqz(B,1); %semicolon. Plot is produced

The behavior shown in the preceding examples differs from the expected
behavior of a MEX-file using freqz with code generation support. To
illustrate this difference create a program called myfreqz.m.

9-15

9 Code Generation from MATLAB® Support in Signal Processing Toolbox™

Copy and paste the following code into the file:

function myfreqz(B,A) %#codegen
freqz(B,A)

Run the following command at the MATLAB command prompt:

codegen myfreqz -args {zeros(1,3), zeros(1,1)} -o myfreqz

Calling the MEX-file writes a 512x1 complex-valued vector to the workspace
and displays the output. The vector is the frequency response. No plot is
produced.

myfreqz([0.05 0.9 0.05],1);

Change the code in myfreqz.m by adding a terminating semicolon:

function myfreqz(B,A) %#codegen
freqz(B,A);

Run the following command at the MATLAB command prompt:

codegen myfreqz -args {zeros(1,3), zeros(1,1)} -o myfreqz

Calling the MEX-file produces a plot of the magnitude and phase response of
the filter. The output of the complex-valued frequency response is suppressed.

myfreqz([0.05 0.9 0.05],1);

Zero Phase Filtering
Design a lowpass Butterworth filter with a 1 kHz 3–dB frequency to
implement zero phase filtering on data with a sampling frequency of 20 kHz.

[B,A] = butter(20,0.314,'low');

Create the program myZerophaseFilt.m.

function output = myZerophaseFilt(input) %#codegen
B=1e-3 *[

0.0000
0.0001
0.0010
0.0060

9-16

Code Generation Examples

0.0254
0.0814
0.2035
0.4071
0.6615
0.8820
0.9702
0.8820
0.6615
0.4071
0.2035
0.0814
0.0254
0.0060
0.0010
0.0001
0.0000];

A=[1.0000
-7.4340
28.2476

-71.6333
134.6222

-197.9575
235.1628

-230.2286
188.0901

-129.1746
74.8284

-36.5623
15.0197
-5.1525
1.4599

-0.3361
0.0613

-0.0085
0.0009

-0.0001
0.0000];

output = filtfilt(B,A,input);

9-17

9 Code Generation from MATLAB® Support in Signal Processing Toolbox™

Run the following command at the MATLAB command prompt:

codegen myZerophaseFilt -args {zeros(1,20001)} -o myZerophaseFilt

Filter input data with myZerophaseFilt:

Fs = 20000;
t = 0:(1/Fs):1;
Comp500Hz = cos(2*pi*500*t);
Signal = Comp500Hz+sin(2*pi*4000*t)+0.2*randn(size(t));
FilteredData = myZerophaseFilt(Signal);
plot(t(1:500).*1000,Comp500Hz(1:500));
xlabel('msec'); ylabel('Amplitude');
axis([0 25 -1.8 1.8]); hold on;
plot(t(1:500).*1000,FilteredData(1:500),'r','linewidth',2);
legend('500 Hz component','Zero phase lowpass filtered data',...
'Location','NorthWest');

9-18

A

Technical Conventions

This manual and all Signal Processing Toolbox functions use the following
technical notations.

Term or Symbol Description

Nyquist frequency One-half the sampling frequency. Some toolbox
functions normalize this value to 1.

x(1) The first element of a data sequence or filter,
corresponding to zero lag.

Ω or w Analog frequency in radians per second.

ω or w Digital frequency in radians per sample.

f Digital frequency in hertz.

[x, y) The interval from x to y, including x but not
including y.

... Ellipses in the argument list for a given
syntax on a function reference page indicate
all possible argument lists for that function
appearing prior to the given syntax are valid.

A Technical Conventions

A-2

Index

IndexA
aliasing

impulse invariance 2-47
preventing 7-24
reducing 7-42

all-pole filters. See IIR filters
all-zero filters. See FIR filters
AM. See amplitude modulation
analog filters 2-9 2-44

Bessel comparison 2-12
bilinear transformation 2-48
Butterworth comparison 2-9
Chebyshev Type I comparison 2-10
Chebyshev Type II comparison 2-10
design 2-7
discretization 2-46
frequency response example 2-13
impulse invariance 2-47
models 1-31
plotting 2-13
See also IIR filters

analog frequency A-1
anti-symmetric filters 2-28
AR models. See autoregressive (AR) models
ARMA filters 1-4

coefficients 1-4
Prony’s method 7-16
Steiglitz-McBride method 7-17
See also IIR filters

ARX models 7-16
autocorrelation

estimation 6-4
multiple channel filters 6-4
variance 6-4

autocovariance
multiple channels 6-4

autoregressive (AR) models 1-3
coefficients 1-3
See also IIR filters

autoregressive moving-average (ARMA) filters.
See ARMA filters

B
band edges

prewarping 2-50
bandpass filters

Chebyshev Type I example 2-45
design 2-7
FIR 2-23
impulse invariance 2-47

bandwidth 2-46
barthannwin Bartlett Hann window function

comparison 7-2
bartlett window function

comparison 7-2
Bessel filters

characteristics 2-12
bias 6-3

linear prediction 7-15
power spectral density 6-17
variance trade-off 6-4
Welch 6-24

bilinear transformations
characteristics 2-48
prewarping example 2-50

blackman window function
comparison 7-2

blackmanharris window function
comparison 7-2

bohmanwin window function
comparison 7-2

boxcar windows. See rectangular windows
brackets A-1
Burg method

characteristics 6-37
example 6-38
spectral estimation 6-7
Welch’s method comparison 6-39

Index-1

Index

Butterworth filters
characteristics 2-9
comparison 2-9
generalized 2-15

C
C header files 5-43
canonical forms 1-6
carrier frequencies 7-32
cascades 1-28
center frequency 2-46
cepstrum 7-26
chebwin Chebyshev window function

comparison 7-2
Chebyshev Type I filters

characteristics 2-10
example 2-45

Chebyshev Type II filters
characteristics 2-10
order estimation 2-8

chirp z-transforms
characteristics 7-38

CIC filters
exporting from FDATool to Simulink 5-38

coefficients
accessing filter 8-30
filter 1-3
lattice 1-28

coherence
definition 6-31
linearly dependent data 6-31

colors
sptool GUI 8-45

communications 7-32
applications 7-32
modeling 7-13
See also modulation, demodulation, voltage

controlled oscillation
compaction

discrete cosine transform 7-41
complex envelope. See Hilbert transforms
context-sensitive help 8-6
continuous-time filters. See analog filters
conversions

errors 5-28
functions (table) 1-32

convolution
cross-correlation 6-3
filtering 1-2
matrix 1-30

correlation 6-2
bias 6-3
linear prediction 7-15
See also autocorrelation, cross-correlation

cosine windows 7-6
covariance 6-2

definition 6-8
methods 6-41
See also autocovariance, cross-covariance,

modified covariance method
cross power spectral density

definition 6-29
cross spectral density 6-29

definition 6-29
See also power spectral density, spectral

estimation
cross-correlation

discussion 6-2
cross-covariance

comparison to cross-correlation 6-2
multiple channels 6-4

czt 7-38
See also chirp z-transforms

D
data

tips 5-18
DC component suppression 1-36

Index-2

Index

deconvolution 7-37
default session

sptool GUI 8-45
delays

group 1-18
noninteger 2-30
phase 1-19
signals 2-29

demodulation
example 7-33

design methods 3-6
customize 3-8

dft. See discrete Fourier transforms
difference equations 1-24
differentiators

definition 2-30
digital audio tape standards 7-24
digital filters 1-2

anti-causal 1-9
cascade 1-28
coefficients 1-3
comparison to IIR 2-17
convolution 1-3
convolution matrices 1-30
design 2-2
FIR design 2-17
fixed-point implementation 1-28
frequency response 1-14
group delay description 1-18
IIR design 2-4
implementation with filter 1-3
impulse response definition 1-12
initial conditions 1-6
lattice/ladder structures 1-28
models 1-23
order 1-3
phase delay definition 1-19
poles 1-24
second-order sections 1-28
specifications 2-8

state-space 1-25
time-domain representation 1-4
transfer functions representation 1-3
transients 1-11
transposed direct-form II structures 1-6
types 1-3
zero-phase implementation 1-9
zero-pole analysis 1-21
zeros 1-24
See also FIR filters, IIR filters

digital frequency A-1
discrete cosine transforms

definition 7-40
energy compaction property 7-41
example 7-41
reconstruct signals 7-41

discrete Fourier transforms 1-11
algorithms 1-35
definition 1-34
eigenvector equivalent 6-44
goertzel 1-36
IIR filter implementation 1-11
inverse two-dimensional 1-36
magnitude 1-35
phase 1-35
power spectrum estimation 6-9
signal length dependencies 1-35
spectral analysis 6-5
time-dependent 7-30
two-dimensional 1-36
See also fast Fourier transforms

discrete prolate spheroidal sequences. See dpss
function

discretization
bilinear transformations 2-48
filters 2-46
impulse invariance 2-47

dpss function
example 6-28

Index-3

Index

E
echo detection 7-26
edge effects 1-11
eigenanalysis 6-44
eigenvector method 6-7

definition 6-43
spectral estimation 6-7
See alsomultiple signal classification method

elliptic filters
definition 2-11

equiripple 2-24
Chebyshev Type I filters 2-10
Chebyshev Type II filters 2-10
Chebyshev windows 7-12
elliptic filters 2-11

error minimization 2-24
weighted frequency bands 2-27

estimation 6-7 6-29
cross spectral density 6-29
See also parametric modeling

export
filter 5-35

F
fast Fourier transforms 1-34

example 1-35
frequency response 1-14
implementation 1-11
output 1-36

fdatool
exporting to Simulink 5-38

fdatool GUI
computing coefficients 5-15
design methods 5-9
exporting filters 5-35
filter architecture 5-27
filter design specification 5-10
filter implementation 5-27
filter order specification 5-10

filter responses 5-16
filters structure 5-27
frequency response specification 5-12
importing 5-30
MATLAB code 5-45
opening 5-7
response type 5-8
saving coefficients 5-35
second analysis 5-17
sessions 5-49

FFT. See fast Fourier transforms
filter algorithm 3-6

choosing 3-6
Filter block 5-38
filter data 3-10
filter design 5-2

customize algorithm 3-8
filter analysis 3-9
Filter Object 3-8
flow chart

flow diagram 3-2
process 3-2
specification 3-4
Specifications Object 3-4
sptool Filter Designer GUI 8-48
See also fdatool GUI

filter design parameters 3-4
Filter Designer GUI. See fdatool GUI
filter function

description 1-6
filter response 3-4
Filter Viewer

open 8-12
printing 8-25

filters 1-5
analog 2-9
anti-causal 1-9
anti-symmetric 2-28
Butterworth (generalized) 2-15
C header file 5-43

Index-4

Index

coefficients 1-3
coefficients in sptool GUI 8-30
convolution 1-2
design 2-6
discretization 2-46
equiripple 2-24
export 5-35
filter and filtfilt functions

comparison 1-9
filter function 1-4
FIR design 2-24
FIR single band 2-23
frequency domain 1-10
frequency transformations 2-44
importing to sptool GUI 8-33
initial conditions using filter function 1-6
lattice/ladder 1-28
linear phase 2-18
linear prediction 7-15
linear system models 1-24
median filtering 7-31
minimax 2-24
order 1-3
phase distortion removal 1-9
phase modulation 7-29
pole-zero editor 5-23
sampling frequency 5-20
saving 5-47
second-order sections 1-28
specifications 2-8
sptool GUI Filter Designer 8-48
types 1-3
zero-phase implementation 1-9
See also fdatool GUI, FIR filters, IIR

filters, digital filters, analog
filters

filtfilt function
filter function comparison 1-9

FIR filters 2-17
arbitrary response 2-37

constrained least square 2-31
differentiators 2-30
equiripple 2-24
example 8-17
frequency domain 1-11
Hilbert transformers 2-28
IIR filter comparison 2-17
implementation 1-6
Kaiser windows 7-10
lattice/ladder 1-28
least square and equiripple comparison 2-25
least square multiband 2-34
least square weighted 2-35
linear phase 2-18
multiband 2-24
multiband example 2-23
reduced delay response 2-40
resample 1-8
sptool GUI Filter Designer 8-48
standard band 2-23
windowing method 2-20

fir1 function
example 2-22

firls function
differentiators 2-30
firpm comparison 2-25
weight vectors 2-27

firpm function
differentiators 2-30
example 2-25
firls comparison 2-25
Hilbert transformers 2-28
weight vectors 2-27

firpmord function
example 2-18

FM. See frequency modulation
frequency

analog A-1
angular 2-2
center 2-46

Index-5

Index

cutoff 2-44
digital A-1
estimation 6-43
normalization 2-2
Nyquist A-1
vectors 2-27

frequency domain
duality with time-domain 1-10
filters 1-10
FIR filtering 1-10
transformation functions 2-44

frequency domain based modeling. See
parametric modeling

frequency response 1-14
Bessel filters 2-12
Butterworth filters 2-9
Chebyshev Type I filters 2-10
Chebyshev Type II filters 2-10
elliptic filters 2-11
error minimization 2-24
evaluating 1-14
example 1-15
Kaiser window 7-9
linear phase 2-18
magnitude 1-17
monotonic 2-9
multiband 2-13
phase 1-17
plotting 1-15
sampling frequency 1-14

freqz function
sampling frequencies 1-14

From Disk radio button 8-37

G
generalized Butterworth filters 2-15
generalized cosine windows 7-6
generalized filters 2-6
Gibbs effect 2-21

reduced by window 7-2
group delay 1-18

comparison to phase delay 2-19
example 1-19
passband 2-12

grpdelay function
example 1-19

H
Hadamard transform 7-43

See also Walsh transform
hamming window function

comparison to boxcar 6-18
comparison to Hann 7-6
example 2-21

hann window function
comparison to Hamming 7-6

highpass filters
FIR example 2-23

hilbert transform function
analytic signals 2-29
description 7-42
example 2-29

homomorphic systems 7-26

I
icceps function

example 7-29
idct function

example 7-40
ideal lowpass filters 2-20

See also lowpass filters
ifft function

example 1-36
ifft2 function

example 1-36
IIR filters 2-5

analog prototype 2-7

Index-6

Index

Bessel 2-12
Butterworth 2-9
Chebyshev Type I 2-10
Chebyshev Type II 2-10
comparison 2-9
comparison to FIR 2-4
design 2-4
elliptic 2-11
Filter Designer GUI 8-48
frequency domain implementation 1-10
frequency response 2-14
generalized Butterworth 2-15
lattice/ladder 1-28
maximally flat 2-15
multiband 2-14
order estimation 2-8
plotting responses 2-13
specifications 2-8
Yule-Walker example 2-13
zero-phase implementation 1-9
See also direct design

image processing 1-36
Import dialog box

sptool from disk 8-37
sptool from workspace 8-18

impulse invariance
example 2-47

impulse response 1-12
ideal 2-20
impulse invariance 2-47

indexing 1-3
initial conditions

example 1-6
using filtfilt function 1-10

instantaneous attributes 7-43
interval notation A-1
inverse cepstrum, complex 7-29
inverse discrete cosine transforms

accuracy of signal reconstruction 7-41
inverse discrete Fourier transforms 1-34

example 1-34
two-dimensional 1-36

invfreqs function
example 7-19

invfreqz function
example 7-19

K
kaiser window function

discussion 7-8
example 6-20
FIR filters 7-10

L
ladder filters. See lattice/ladder filters
Laplace transforms 1-31
latc2tf function

example 1-30
latcfilt function

example 1-10
lattice/ladder filters 1-28

implementation 1-29
latcfilt function 1-30

levinson function
example 7-15
parametric modeling 7-15

line
drawing in FDATool 5-19

line style 8-45
linear models. See models
linear phase filters 2-18
linear prediction

modeling 7-15
linear system transformations. See conversions
lowpass filters

FIR 2-23
ideal 2-20
impulse invariance 2-47

Index-7

Index

impulse response 2-20
lp2bp function

example 2-45
lpc. See prony function, linear prediction

M
magnitude

Fourier transforms 1-35
frequency response extraction 1-17
plots 8-57
transfer functions 6-29

MAT-files
dpss.mat 6-28
sptool GUI 8-37

MATLAB code
generating in FDATool 5-45

matrices
convolution 1-30

matrix forms. See state-space forms
maxflat function

discussion 2-15
maximally flat filters. See maxflat function
maximum entropy estimate 6-35
medfilt1 function

example 7-31
minimax method 2-24

FIR filters 2-24
See also Parks-McClellan algorithm

models 1-23
bilinear transformations 2-49
transformations 2-49

modified covariance method 6-41
modulate function

definition 7-32
example 7-33
time vector 7-33

modulation 7-32
moving-average (MA) filters 1-3

See also FIR filters

MTM. See multitaper method
multiband filters

FIR 2-23
IIR 2-13

multiple signal classification method (MUSIC)
discussion 6-7
example 6-43

multiplicity of zeros and poles 8-56
multirate filters 1-8
multitaper method (MTM) 6-25
MUSIC algorithm. See multiple signal

classification method

N
nonrecursive filters. See FIR filters
normalization 6-3

modified periodogram 6-18
periodogram bias 6-17
Welch’s power spectral density 6-24

Nyquist frequency A-1

O
order

estimation 2-8
overlap-add method

FIR filter implementation 1-11

P
p-model. See parametric modeling
Panner check box 8-45
parametric modeling 7-13

applications 7-13
frequency domain based 7-19
linear predictive coding 7-15
Steiglitz-McBride method 7-17
summary 2-6
techniques 7-13
time-domain based 7-14

Index-8

Index

parentheses A-1
partial fraction expansion 1-31

residue 1-26
passband

Chebyshev Type I 2-10
equiripple 2-11
group delay 2-12

pburg function
example 6-38

pcov function
example 6-41

periodogram function
discussion 6-9

phase
delay 1-19
distortion 1-9
Fourier transforms 1-35
frequency response 1-17
linear delay 2-19
transfer functions 6-29
unwrapping 1-17

plots
analog filters 2-13
coherence function 6-31
complex cepstrum 7-27
DFT 1-35
frequency response 1-15
group delay 1-19
magnitude 8-57
magnitude and phase 1-17
phase 1-17
phase delays 1-19
transfer functions 6-30
zero-pole 1-21

plug-ins 8-46
pmcov function

example 6-41
pole-zero editor 5-23
pole-zero filters. See IIR filters
poly function

example 1-24
polynomials

division 7-37
roots 1-24

polyphase filtering techniques 1-8
power spectral density 6-5

Burg estimation example 6-37
covariance estimation example 6-41
multitaper estimation example 6-25
MUSIC estimation example 6-43
periodogram bias 6-17
periodogram normalization 6-17
plots 8-14
sptool GUI 8-35
units 6-6
Welch’s bias 6-24
Welch’s estimation bias 6-24
Welch’s estimation example 6-21
Welch’s normalization 6-24
Yule-Walker estimation example 6-34

prediction filters 7-15
Preferences menu item 8-44
Print dialog box 8-27
print to figure 5-21
prolate-spheroidal windows 7-8
prony function

example 7-16
Prony’s method. See prony function
pulse position modulation 7-33
pyulear function

Burg comparison 6-38
example 6-35

R
radar applications 7-30
range notation A-1
rceps function

example 7-28
realize data 3-10

Index-9

Index

rectangular windows 7-3
rectwin function

example 7-3
recursive filters. See IIR filters
references

special topics 7-49
statistical signal processing 6-48

reflection coefficients 1-29
definition 1-28

rejection area 5-19
resample function

example 7-23
resampling. See decimation, interpolation
residue forms. See partial fraction expansion
roots

polynomials 1-24
rulers

sptool GUI 8-45
running average 7-16

S
sampling frequency 5-20

FIR filters 1-8
freqz function 1-16
irregularly spaced data 7-25
range 1-16
resampling discussion 7-23
spacing 1-16
using upfirdn function 1-8

saved filters 5-47
saving data

Spectrum Viewer 8-31
second-order sections 1-27

conversion to in fdatool 5-28
matrices 1-27
sptool GUI 8-35

Signal Browser 8-7
axis labels 8-45
markers preferences 8-45

overview 8-7
Panner preferences 8-45
printing 8-25
signals, measuring 8-42
zooming, preferences 8-45

signals 2-29
analytic 7-42
applications 7-42
array 8-7
auto- and cross-correlation 6-4
carrier 7-32
DCT coefficients reconstruction 7-41
differentiators 2-30
measurements 8-42
properties 7-42

Simulink
exporting from FDATool 5-38

Slepian sequences
See discrete prolate spheroidal sequences

6-28
sonar applications 7-30
spectral analysis 6-5

cross spectral density 6-29
power spectral density 6-5
PSD 6-5
Spectrum Viewer 8-14
See also spectral estimation

spectral density 6-5
measurements 8-42
plots 8-14
Spectrum Viewer 8-14
units 6-6
See also cross spectral density; power
spectral density

spectral estimation 6-9
Burg method example 6-37
Welch’s method bias 6-24
Welch’s method discussion 6-21
Welch’s method example 6-7
Yule-Walker AR method example 6-35

Index-10

Index

spectrogram
definition 7-30

spectrogram function
example 7-30

spectrum
mask 5-19

Spectrum Viewer 8-14
activating 8-14
axis parameters 8-45
markers, preferences 8-45
measurements 8-42
opening 8-14
overview 8-14
printing 8-27
rulers 8-42
spectra structures 8-31
spectral density plots 8-14
windows 8-15
zooming 8-45

spectrum.mtm function
example 6-26

speech processing
parametric modeling 7-13
resampling 7-24

spline function 7-25
sptool GUI

colors, customizing 8-45
context-sensitive help 8-6
customizing 8-44
data objects 8-40
data structures 8-3
editing 8-41
example 8-17
exporting data 8-28
filter coefficients 8-51
filter design 8-19
filter importing 8-33
filter parameters 8-30
filter saving 8-29
filter transfer functions 8-30

filtering 8-21
filters 8-33
help 8-6
Import dialog 8-18
importing filters and spectra 8-33
importing signals 8-17
items, selecting 8-40
line style 8-45
MAT-files 8-37
MATLAB workspace 8-3
multiselection of items 8-40
operation 8-3
preferences 8-44
printing 8-27
rulers 8-42
sample frequency 8-52
saving 8-28
second-order section forms 8-35
signal analysis 8-23
signal measurement 8-42
signal playing 8-24
sound 8-24
spectra analysis 8-25
spectra import 8-35
spectral densities import 8-33
spectral densities plot 8-35
Spectrum Viewer 8-25
state-space forms 8-34
transfer functions 8-34
tutorial 8-2
workspace 8-3
zero-pole-gain forms 8-34

standards, digital audio tape 7-24
startup transients 1-10
state-space forms 1-25

continuous time 1-31
scalar 1-25
sptool GUI 8-34

statistical operations 6-2

Index-11

Index

See also autocorrelation sequences;
cross-correlation sequences; cross-covariance

Steiglitz-McBride method
example 7-17

stmcb function
example 7-17

stopband
Chebyshev Type II 2-10
elliptic 2-11

structures
conversion 5-28
conversion round off 1-33
lattice/ladder 1-28
transposed direct-form II 1-6

system identification 7-16

T
tapers (PSD estimates) 6-25
taps 2-18
tf2latc function

example 1-29
tfestimate function

example 6-29
time series attributes 7-43
time-domain based modeling. See parametric

modeling
transfer functions 1-3

coefficients 8-30
discrete time models 1-24
factoring 1-24
filter coefficients 8-51
partial fractions 1-26
sptool GUI 8-34
Welch’s estimation 6-29
zero-pole-gain forms 1-24

transformations
bilinear 2-48
frequency 2-44
models 1-32

transforms 7-38
chirp z-transforms (CZT) discussion 7-38
discrete Fourier 1-34
Hadamard 7-43
Hilbert discussion 7-42
inverse discrete cosine discussion 7-40
Walsh 7-43

transients 1-11
transition band 2-25
transposed direct-form II structure 1-6
triang triangle window function

Bartlett comparison 7-4
two-dimensional operations 1-36

U
units of power spectral density (PSD) 6-6
unwrap function

example 1-17
upfirdn function

example 1-8
resampling 7-25

V
variables

load from disk 8-37
variance 6-4
vco

example 7-36
vectors

frequency 2-27
indexing 1-3

voltage controlled oscillators
example 7-36

W
Walsh transform 7-43
Welch’s method 6-21

AR Yule-Walker comparison 6-35

Index-12

Index

bias and normalization 6-24
Burg comparison 6-39
MTM comparison 6-28
nonparametric system identification 6-29
power spectral density estimation 6-29

windows
Bartlett comparison 7-4
Blackman comparison 7-6
boxcar 2-20
Chebyshev overview 7-12
cosine 7-6
filters 2-20
finite impulse response filters 2-20
fir1 function 2-23
Hamming discussion 7-6
Hamming rectangular example 6-18
Hamming ringing example 2-21
Hann example 7-6
Kaiser discussion 7-8
Kaiser example 6-20
multiband FIR filters 2-23
prolate-spheroidal 7-8
rectangular example 2-20
shapes 7-3
single band FIR filters 2-23
spectral leakage 6-12

Workspace Contents list 8-18

Y
Yule-Walker AR method

description 6-34
example 6-38
Welch’s method comparison 6-35

yulewalk function
example 2-14

Z
z-transforms

chirp z 7-38
definition 1-24
discrete Fourier transforms 1-34
equation 1-3

zero frequency component, centering 1-36
zero-pole

multiplicity 8-56
plots 1-21
transfer functions 1-24

zero-pole-gain 1-24
zero-pole-gain forms 1-31

sptool GUI 8-34
zoom

sptool GUI 8-45

Index-13

	toc
	Filtering, Linear Systems and Transforms Overview
	Filter Implementation and Analysis
	Filtering Overview
	Convolution and Filtering
	Filters and Transfer Functions
	Filter Coefficients and Filter Names

	Filtering with the filter Function

	The filter Function
	Other Functions for Filtering
	Multirate Filter Bank Implementation
	Anti-Causal, Zero-Phase Filter Implementation
	Frequency Domain Filter Implementation

	Impulse Response
	Frequency Response
	Digital Domain
	Analog Domain
	Magnitude and Phase
	Delay

	Zero-Pole Analysis
	Linear System Models
	Available Models
	Discrete-Time System Models
	Transfer Function
	Zero-Pole-Gain
	State-Space
	Partial Fraction Expansion (Residue Form)
	Second-Order Sections (SOS)
	Lattice Structure
	Convolution Matrix

	Continuous-Time System Models
	Linear System Transformations

	Discrete Fourier Transform

	Filter Design and Implementation
	Filter Requirements and Specification
	IIR Filter Design
	IIR vs. FIR Filters
	Classical IIR Filters
	Other IIR Filters
	IIR Filter Method Summary
	Classical IIR Filter Design Using Analog Prototyping
	Complete Classical IIR Filter Design
	Designing IIR Filters to Frequency Domain Specifications

	Comparison of Classical IIR Filter Types
	Butterworth Filter
	Chebyshev Type I Filter
	Chebyshev Type II Filter
	Elliptic Filter
	Bessel Filter
	Direct IIR Filter Design
	Generalized Butterworth Filter Design

	FIR Filter Design
	FIR vs. IIR Filters
	FIR Filter Summary
	Linear Phase Filters
	Windowing Method
	Standard Band FIR Filter Design: fir1
	Multiband FIR Filter Design: fir2

	Multiband FIR Filter Design with Transition Bands
	Basic Configurations
	The Weight Vector
	Anti-Symmetric Filters / Hilbert Transformers
	Differentiators

	Constrained Least Squares FIR Filter Design
	Basic Lowpass and Highpass CLS Filter Design
	Multiband CLS Filter Design
	Weighted CLS Filter Design

	Arbitrary-Response Filter Design
	Multiband Filter Design
	Filter Design with Reduced Delay

	Special Topics in IIR Filter Design
	Classic IIR Filter Design
	Analog Prototype Design
	Frequency Transformation
	Filter Discretization
	Impulse Invariance
	Bilinear Transformation

	Selected Bibliography

	Designing a Filter in Fdesign — Process Overview
	Process Flow Diagram and Filter Design Methodology
	Exploring the Process Flow Diagram
	Selecting a Response
	Selecting a Specification
	Selecting an Algorithm
	Customizing the Algorithm
	Designing the Filter
	Design Analysis
	Realize or Apply the Filter to Input Data

	Designing a Filter in the Filterbuilder GUI
	The Graphical Interface to Fdesign
	Introduction to Filterbuilder
	Filterbuilder Design Process
	Select a Response
	Select a Specification
	Select an Algorithm
	Customize the Algorithm
	Analyze the Design
	Realize or Apply the Filter to Input Data

	Designing a FIR Filter Using filterbuilder
	FIR Filter Design
	Example – Using Filterbuilder to Design a Finite Impulse Respons

	FDATool: A Filter Design and Analysis GUI
	Overview
	Introduction to FDA Tool
	Integrated Products
	Filter Design Methods
	Advanced Filter Design Methods

	Using the Filter Design and Analysis Tool
	Analyzing Filter Responses
	Filter Design and Analysis Tool Panels
	Getting Help

	Opening FDATool
	Choosing a Response Type
	Choosing a Filter Design Method
	Setting the Filter Design Specifications
	Viewing Filter Specifications
	Filter Order
	Options
	Bandpass Filter Frequency Specifications
	Bandpass Filter Magnitude Specifications

	Computing the Filter Coefficients
	Analyzing the Filter
	Displaying Filter Responses
	Using Data Tips
	Drawing Spectral Masks
	Changing the Sampling Frequency
	Displaying the Response in FVTool

	Editing the Filter Using the Pole/Zero Editor
	Displaying the Pole-Zero Plot
	Changing the Pole-Zero Plot

	Converting the Filter Structure
	Converting to a New Structure
	Converting to Second-Order Sections

	Importing a Filter Design
	Import Filter Panel
	Filter Structures
	Direct-form
	Lattice
	Discrete-time Filter (dfilt object)
	Multirate Filter (mfilt object)

	Exporting a Filter Design
	Exporting Coefficients or Objects to the Workspace
	Exporting Coefficients to an ASCII File
	Exporting Coefficients or Objects to a MAT-File
	Exporting to SPTool
	Exporting to a Simulink Model
	Other Ways to Export a Filter

	Generating a C Header File
	Generating MATLAB Code
	Managing Filters in the Current Session
	Saving and Opening Filter Design Sessions

	Statistical Signal Processing
	Correlation and Covariance
	Background Information
	Using xcorr and xcov Functions
	Bias and Normalization
	Multiple Channels

	Spectral Analysis
	Background Information
	Spectral Estimation Method
	Nonparametric Methods
	Periodogram
	Performance of the Periodogram
	The Modified Periodogram
	Welch's Method
	Bias and Normalization in Welch's Method
	Multitaper Method
	Cross-Spectral Density Function
	Transfer Function Estimate
	Coherence Function

	Parametric Methods
	Yule-Walker AR Method
	Burg Method
	Covariance and Modified Covariance Methods
	MUSIC and Eigenvector Analysis Methods
	Eigenanalysis Overview

	Using FFT to Obtain Simple Spectral Analysis Plots

	Selected Bibliography

	Special Topics
	Windows
	Why Use Windows?
	Available Window Functions
	Graphical User Interface Tools
	Basic Shapes
	Generalized Cosine Windows
	Kaiser Window
	Kaiser Windows in FIR Design

	Chebyshev Window

	Parametric Modeling
	What is Parametric Modeling
	Available Parametric Modeling Functions
	Time-Domain Based Modeling
	Linear Prediction
	Prony's Method (ARMA Modeling)
	Steiglitz-McBride Method (ARMA Modeling)

	Frequency-Domain Based Modeling

	Resampling
	Available Resampling Functions
	resample Function
	decimate and interp Functions
	upfirdn Function
	spline Function

	Cepstrum Analysis
	What Is a Cepstrum?
	Summary of Cepstrum Functions

	Inverse Complex Cepstrum

	FFT-Based Time-Frequency Analysis
	Median Filtering
	Communications Applications
	Modulation
	Demodulation
	Voltage Controlled Oscillator

	Deconvolution
	Specialized Transforms
	Chirp z-Transform
	Discrete Cosine Transform
	Hilbert Transform
	Walsh–Hadamard Transform
	Using Walsh-Hadamard Transform for Spectral Analysis and Compres

	Selected Bibliography

	SPTool: A Signal Processing GUI Suite
	SPTool: An Interactive Signal Processing Environment
	SPTool Overview
	SPTool Data Structures

	Opening SPTool
	Getting Context-Sensitive Help
	Signal Browser
	Overview of the Signal Browser
	Opening the Signal Browser

	FDATool
	Filter Visualization Tool
	Connection between FVTool and SPTool
	Opening the Filter Visualization Tool
	Analysis Parameters

	Spectrum Viewer
	Spectrum Viewer Overview
	Opening the Spectrum Viewer

	Filtering and Analysis of Noise
	Overview
	Importing a Signal into SPTool
	Designing a Filter
	Opening FDATool
	Specifying the Bandpass Filter

	Applying a Filter to a Signal
	Analyzing a Signal
	Playing a Signal
	Printing a Signal

	Spectral Analysis in the Spectrum Viewer
	Creating a PSD Object From a Signal
	Opening the Spectrum Viewer with Two Spectra
	Printing the Spectra

	Exporting Signals, Filters, and Spectra
	Opening the Export Dialog Box
	Exporting a Filter to the MATLAB Workspace

	Accessing Filter Parameters
	Accessing Filter Parameters in a Saved Filter
	The tf Field: Accessing Filter Coefficients

	Accessing Parameters in a Saved Spectrum

	Importing Filters and Spectra
	Similarities to Other Procedures
	Importing Filters
	Transfer Function
	State Space
	Zeros, Poles, Gain
	Second Order Sections

	Importing Spectra

	Loading Variables from the Disk
	Saving and Loading Sessions
	SPTool Sessions
	Filter Formats

	Selecting Signals, Filters, and Spectra
	Editing Signals, Filters, or Spectra
	Making Signal Measurements with Markers
	Setting Preferences
	Overview of Setting Preferences
	Summary of Settable Preferences
	Setting the Filter Design Tool

	Using the Filter Designer
	Filter Designer
	Filter Types
	FIR Filter Methods
	IIR Filter Methods
	Pole/Zero Editor
	Spectral Overlay Feature
	Opening the Filter Designer
	Accessing Filter Parameters in a Saved Filter
	The tf Field: Accessing Filter Coefficients
	The Fs Field: Accessing Filter Sample Frequency
	The specs Field: Accessing other Filter Parameters

	Designing a Filter with the Pole/Zero Editor
	Positioning Poles and Zeros
	Redesigning a Filter Using the Magnitude Plot

	 Code Generation from MATLAB Support in Signal Processing Toolbo
	Supported Functions
	Specifying Inputs in Code Generation from MATLAB
	Defining Input Size and Type
	Inputs must be Constants

	Code Generation Examples
	Apply Window to Input Signal
	Apply Lowpass Filter to Input Signal
	Cross Correlate or Autocorrelate Input Data
	freqz With No Output Arguments
	Zero Phase Filtering

	Technical Conventions
	Index

	tables
	Toolbox Filters Methods and Available Functions
	Filter Design Functions
	FIR Filters
	Spectral Estimation Methods/Functions
	AR Methods

